Search results

1 – 10 of 94
Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 14 July 2021

Luca Giorleo and Michele Bonaventi

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

1642

Abstract

Purpose

The purpose of present paper is to enlarge the knowledge about the performance of gypsum powder to realize complex molds or cores for aluminum casting.

Design/methodology/approach

The research was divided into two activities: simple; and complex-part production capability. In the simple-part step, the performance of gypsum powder and the minimum mold thickness that would withstand the casting process. In the complex-part step, the authors first investigated the powder removability as a function of geometry complexity and then binder jetting performance was evaluated for the case of lattice-structure fabrication.

Findings

All the geometries tested withstand the casting process demonstrating the benefits in terms of complexity part design; however, the process suffers of all the typical defect of casting as misrun, porosity and cold shut.

Originality/value

The results found in this research improve the benefits related to additive manufacturing application in industrial environment and in particular to the binder jetting technology and the rapid casting approach.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 27 April 2020

Mojtaba Izadi, Aidin Farzaneh, Mazher Mohammed, Ian Gibson and Bernard Rolfe

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the…

11435

Abstract

Purpose

This paper aims to present a comprehensive review of the laser engineered net shaping (LENS) process in an attempt to provide the reader with a deep understanding of the controllable and fixed build parameters of metallic parts. The authors discuss the effect and interplay between process parameters, including: laser power, scan speed and powder feed rate. Further, the authors show the interplay between process parameters is pivotal in achieving the desired microstructure, macrostructure, geometrical accuracy and mechanical properties.

Design/methodology/approach

In this manuscript, the authors review current research examining the process inputs and their influences on the final product when manufacturing with the LENS process. The authors also discuss how these parameters relate to important build aspects such as melt-pool dimensions, the volume of porosity and geometry accuracy.

Findings

The authors conclude that studies have greatly enriched the understanding of the LENS build process, however, much studies remains to be done. Importantly, the authors reveal that to date there are a number of detailed theoretical models that predict the end properties of deposition, however, much more study is necessary to allow for reasonable prediction of the build process for standard industrial parts, based on the synchronistic behavior of the input parameters.

Originality/value

This paper intends to raise questions about the possible research areas that could potentially promote the effectiveness of this LENS technology.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 4 January 2013

161

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 1
Type: Research Article
ISSN: 0961-5539

Content available
Article
Publication date: 1 May 1999

Vaughan Voller

268

Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 3
Type: Research Article
ISSN: 0961-5539

Open Access
Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing…

15542

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Book part
Publication date: 24 March 2021

Abstract

Details

Organizational Imaginaries: Tempering Capitalism and Tending to Communities through Cooperatives and Collectivist Democracy
Type: Book
ISBN: 978-1-83867-989-7

Open Access
Article
Publication date: 19 March 2024

Feng Chen, Zhongjin Wang, Dong Zhang and Shuai Zeng

Explore the development trend of chemically-improved soil in railway engineering.

Abstract

Purpose

Explore the development trend of chemically-improved soil in railway engineering.

Design/methodology/approach

In this paper, the technical standards home and abroad were analyzed. Laboratory test, field test and monitoring were carried out.

Findings

The performance design system of the chemically-improved soil should be established.

Originality/value

On the basis of the performance design, the test methods and standards for various properties of chemically-improved soil should be established to evaluate the improvement effect and control the engineering quality.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive…

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 94