Search results

1 – 10 of 607
Article
Publication date: 10 May 2021

Benliang Xu, Zuchao Zhu, Zhe Lin, Dongrui Wang and Guangfei Ma

The purpose of this paper is to analyze the mechanism of particle erosion in butterfly valve pipelines under hydraulic transportation conditions. The results will affect the…

Abstract

Purpose

The purpose of this paper is to analyze the mechanism of particle erosion in butterfly valve pipelines under hydraulic transportation conditions. The results will affect the sealing and safety of butterfly valve pipelines and hopefully serve as reference for the anti-erosion design of butterfly valve pipelines.

Design/methodology/approach

Through the discrete element method (DEM) simulation that considers the force between particles, the detached eddy simulation (DES) turbulence model based on realizable k-epsilon is used to simulate the solid-liquid two-phase flow-induced erosion condition when the butterfly valve is fully opened. The simulation is verified by building an experimental system correctness. The solid-liquid two-phase flow characteristics, particle distribution and erosion characteristics of the butterfly valve pipeline under transportation conditions are studied.

Findings

The addition of particles may enhance the high-speed area behind the valve. It first increases and then decreases with increasing particle size. With increasing particle size, the low-velocity particles change from being uniformly distributed in flow channel to first gathering in the front of the valve and, then, to gathering in lower part of it. Fluid stagnation at the left arc-shaped flange leads to the appearance of two high-speed belts in the channel. With increasing fluid velocity, high-speed belts gradually cover the entire valve surface by focusing on the upper and lower ends, resulting in the overall aggravation of erosion.

Originality/value

Considering the complexity of solid-liquid two-phase flow, this is the first time that the DEM method with added inter-particle forces and the DES turbulence model based on realizable k-epsilon has been used to study the flow characteristics and erosion mechanism of butterfly valves under fully open transportation conditions.

Details

Industrial Lubrication and Tribology, vol. 73 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2020

Benliang Xu, Zuchao Zhu, Zhe Lin and Dongrui Wang

The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design.

Abstract

Purpose

The study aims to decrease the effect of solid particles on a butterfly valve, which will cause seal failure and leakage, providing a reference for anti-wear design.

Design/methodology/approach

In this paper, computational fluid dynamics discrete element method (CFD-DEM) simulation was conducted to study the solid–liquid two-phase flow characteristics and erosion characteristics of a butterfly valve with a different opening.

Findings

Abrasion at 10% opening is affected by high-speed jets in upper and lower parts of the pipeline, where the erosion is intense. The impact of the jet on the upper part of 20% opening begins to weaken. With the top backflow vortex disappearing, the effect of lower jet is enhanced. Meanwhile, the bottom backflow vortex phenomenon is obvious, and the abrasion position moves downward. At 30% opening, the velocity is further weakened, and the circulation effect of lower flow channel is more obvious than that of the upper one.

Originality/value

It is the first time to use DEM to investigate the two-phase flow and erosion characteristics at a small opening of a butterfly valve, considering the effect of inter-particle collision. Therefore, this study carries on the thorough analysis and discussion. At the same opening degree, with increasing of the particle size, the abrasion of valve frontal surface increases when the size is less than 150 µm and decreases when it is greater than 150 µm. For the valve backflow surface, this boundary value becomes 200 µm.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0264/

Details

Industrial Lubrication and Tribology, vol. 73 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2005

M.A. Habib, R. Ben‐Mansour, H.M. Badr, S.A.M. Said and S.S. Al‐Anizi

In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various…

1079

Abstract

Purpose

In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various flow passages. Erosion in the tube entrance region of a typical shell and tube heat exchanger is numerically predicted.

Design/methodology/approach

The erosion rates are obtained for different flow rates and particle sizes assuming low particle concentration. The erosion prediction is based on using a mathematical model for simulating the fluid velocity field and another model for simulating the motion of solid particles. The fluid velocity (continuous phase) model is based on the solution of the time‐averaged governing equations of 3D turbulent flow while the particle‐tracking model is based on the solution of the governing equation of each particle motion taking into consideration the viscous and gravity forces as well as the effect of particle rebound behavior.

Findings

The results show that the location and number of eroded tubes depend mainly on the particle size and velocity magnitude at the header inlet. The rate of erosion depends exponentially on the velocity. The particle size shows negligible effect on the erosion rate at high velocity values and the large‐size particles show less erosion rates compared to the small‐size particles at low values of inlet flow velocities.

Originality/value

In oil and gas industries, the presence of sand particles in produced oil and natural gas represents a major concern because of the associated erosive wear occurring in various flow passages. The results indicate that erosion in shell and tube heat exchanger can be minimized through the control of velocity inlet to the header.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 January 2019

Min Wang, Y.T. Feng, Ting T. Zhao and Yong Wang

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand…

Abstract

Purpose

Sand production is a challenging issue during hydrocarbon production in the oil and gas industry. This paper aims to investigate one sand production process, i.e. transient sand production, using a novel bonded particle lattice Boltzmann method. This mesoscopic technique provides a unique insight into complicated sand erosion process during oil exploitation.

Design/methodology/approach

The mesoscopic fluid-particle coupling is directly approached by the immersed moving boundary method in the framework of lattice Boltzmann method. Bonded particle method is used for resolving the deformation of solid. The onset of grain erosion of rocks, which are modelled by a bonded particle model, is realised by breaking the bonds simulating cementation when the tension or tangential force exceeds critical values.

Findings

It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. It is found that when the drawdown happens at the wellbore cavity, the tensile failure area appears at the edge of the cavity. Then, the tensile failure area gradually propagates inward, and the solid particles at the tensile failure area become fluidised because of large drag forces. Subsequently, some eroded particles are washed out. This numerical investigation is demonstrated through comparison with the experimental results. In addition, through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Originality/value

A novel bonded particle lattice Boltzmann method is used to investigate the sand production problem at the grain level. It is proved that the complex fluid–solid interaction occurring at the pore/grain level can be well captured by the immersed moving boundary scheme in the framework of the lattice Boltzmann method. Through breaking the cementation, which is simulated by bond models, between bonded particles, the transient particle erosion process is successfully captured.

Details

Engineering Computations, vol. 36 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 January 2022

Yong Wang, Xiaolin Wang, Jie Chen, Gangxiang Li, Houlin Liu and Wei Xiong

The purpose of the paper is to predict the erosion rate of the components of centrifugal pump under certain operating condition to identify the maximum erosion area and to discuss…

Abstract

Purpose

The purpose of the paper is to predict the erosion rate of the components of centrifugal pump under certain operating condition to identify the maximum erosion area and to discuss the factors affecting them. This helps to optimize design and estimate service life.

Design/methodology/approach

In the paper, the Eulerian–Lagrangian approach method coupled with the erosion model to investigate the mixed sand characteristics on erosion characteristics of centrifugal pump flow-through wall. The hydraulic performance and wear characteristics experiment of the pump is used to verify the accuracy of the numerical simulation.

Findings

The blade erosion area mainly occurs near the blade inlet and the trailing edge of the pressure surface, the main erosion area of the impeller back shroud is near the outlet of the flow passage and the main erosion area of the volute is near the tongue and the I section. With the change of the average diameter and density of sand particles, the average erosion rate on different flow-through walls is positively correlated with the average mass concentration to a certain extent. However, for different sand shape factors, there is little correlation between the average erosion rate and the average mass concentration. In addition, compared with other erosion areas, the increase of average sand particle diameter and density has the greatest impact on the total erosion rate of blade pressure surface, while the shape of sand particles has a greater impact on the total erosion rate of each flow-through wall of centrifugal pump.

Originality/value

In this work, according to the characteristics of the mixed distribution of different sand diameters in the Yellow River Basin, the erosion characteristics of centrifugal pumps used in the Yellow River Basin are studied. The numerical calculation method for predicting the wall erosion of centrifugal pump is established and compared with the experimental results. The results can provide reference for optimizing design and increasing service life.

Details

Engineering Computations, vol. 39 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 October 2019

Gurmeet Singh, Satish Kumar, Satbir Singh Sehgal and Shashi Bhushan Prasad

This paper aims to depict the erosion performance of two HVOF-coated micron layers (Colmonoy-88 and Stellite-6) on pump impeller steel (SS-410) by using Taguchi's method…

Abstract

Purpose

This paper aims to depict the erosion performance of two HVOF-coated micron layers (Colmonoy-88 and Stellite-6) on pump impeller steel (SS-410) by using Taguchi's method. Taguchi's array (L16) was used to optimize the erosion wear (in terms of weight loss) by using four influencing parameters such as rotational speed, solid concentration, average particle size and time which were varied at four different levels.

Design/methodology/approach

The experiments were carried out by using a Ducom slurry tester with rotational speed in the range of 750-1,500 rpm, solid concentration of 35-65 per cent by weight, time period of 75-210 min and average particle sizes in the range of < 53 to 250 µm. Bottom Ash with a nominal size range of < 53 to 250 µm was used as erodent. The process parameters were optimized by using Taguchi's method. The ANOVA method was used to validate the results given by Taguchi's method.

Findings

The results revealed that the presence of both carbides and borides and the additional presence of Cr in Colmonoy-88 coating enhancing the slurry erosion resistance of Colmonoy-88 coating. Moreover, the chromium and tungsten carbide particles help in increasing the bond strength between the coating and the substrate material. Further, it was also found that the time was the most dominant factor as compared to other factors.

Originality/value

The very less work has been reported on optimization of erosion wear response of Colmonoy-88 and Stellite-6 coatings by using different design of experiment techniques. Further, the erosion wear mechanism of both coatings has been studied by using image j analysis software.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 May 2018

Mohammed Ahmed Al-Bukhaiti, Ahmed Abouel Kasem Mohamad, Karam Mosa Emara and Shemy M. Ahmed

This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In…

Abstract

Purpose

This paper aims to investigate the influence of slurry concentration on the erosion behavior of AISI 5117 steel and high-chromium white cast iron by using a whirling-arm rig. In this study, the slurry erosion mechanism with particle concentration has been studied.

Design/methodology/approach

The tests were carried out with particle concentrations in the range of 1-7 Wt.%, and the impact velocity of slurry stream was 15 m/s. Silica sand with a nominal size range of 500-710 µm was used as an erodent. The study revealed that the failure mode was independent of concentration.

Findings

The results showed that the erosion rate decreases with the increase in particle concentration and the variation in the reduction depends on the material. It was found that the variation of fractal dimension calculated from slope of linearized power spectral density of eroded surface image for different concentrations can be used to characterize the slurry erosion intensity in a similar manner to the erosion rate. It was also found that the variation of fractal dimension versus concentration of sand has a general trend that does not depend on magnification factor.

Originality/value

Using the gravitational measurement and image analysis, the variation of the wear with slurry concentration has been analyzed to investigate the implicated mechanisms of erosion during the process.

Details

Industrial Lubrication and Tribology, vol. 70 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 March 2009

Zdzislaw Mazur, Rafael Campos‐Amezcua and Alfonso Campos‐Amezcua

This paper aims to validate an axial turbine modified nozzle design, looking for a reduction of the nozzle erosion process during operation in power plants.

Abstract

Purpose

This paper aims to validate an axial turbine modified nozzle design, looking for a reduction of the nozzle erosion process during operation in power plants.

Design/methodology/approach

The approach taken is numerical simulation using the computational fluid dynamics (CFD) tool, comparing original and proposed/modified nozzle designs.

Findings

The paper provides information about how to achieve a solution of the turbine operational problem (abrasive wear) by an analysis of flow patterns under a variety of conditions.

Research limitations/implications

It does not give a detailed interpretation of flow behaviour due to the lack of validation data.

Practical implications

A very useful flow simulation methodology that can be used in industry is provided.

Originality/value

The proposed design modification of an axial turbine nozzle with the aid of CFD simulation has not been performed yet. This paper investigates the possibility of nozzle erosion reduction by modifying local flow patterns.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 February 2016

Mehmet Bagci and Huseyin Imrek

This study aims to examine solid particle erosion behavior of novel hybrid composite materials where borax (B2O3) particles (∼150 μm) were added to glass fabric and epoxy resin at…

Abstract

Purpose

This study aims to examine solid particle erosion behavior of novel hybrid composite materials where borax (B2O3) particles (∼150 μm) were added to glass fabric and epoxy resin at an amount of 15 and 30 per cent.

Design/methodology/approach

The tests that involved slightly rounded and irregular Al2O3 particles having two erodent sizes (200, 400 μm) were conducted at these operational conditions; namely, three impact velocities (23, 34, 53 m/s), two fabric directions (0/90/0, 45/−45/45) and three impingement angles (30°, 60°, 90°). In addition, the design of experiments, which utilizes Taguchi’s robust orthogonal arrays approach, was used and an optimum parameter combination was established, which had a minimum erosion rate. Moreover, scanning electron microscope and X-ray diffraction views show the visual effect of filler material.

Findings

All test specimens regardless of their dissimilar characteristics displayed maximum erosion rate at 30° impingement angle. Test specimens with 45/−45/45 fabric direction are more wear-resistant than their counterparts with 0/90/0 fabric direction. The erosion wear of glass fabric reinforced epoxy (GF/EP) composites whose matrix had 15 per cent addition of borax particles was higher than that of neat GF/EP composites. In addition, new composite material formed by including borax particles at a rate of 30 per cent of resin leads to a reduction in erosion rates.

Originality/value

While fabric-reinforced polymers take place in most of the studies conducted on erosive wear of composites, studies involving erosion on composites with filler materials can hardly be encountered.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2018

Gurmeet Singh, Satish Kumar and Satbir S. Sehgal

This paper aims to optimize the erosion wear analysis of slurry impeller material. Stainless steel (SS-410) was used as the pump impeller material. This erosion test was…

Abstract

Purpose

This paper aims to optimize the erosion wear analysis of slurry impeller material. Stainless steel (SS-410) was used as the pump impeller material. This erosion test was established to influence the rotational speed, solid concentration, time period and particle size. Fly ash was used as the erodent material.

Design/methodology/approach

The erosion wear experiments were performed at different particle size, rotational speed, time duration and solid concentration (by weight). These tests were performed at four different speeds of 750, 1,000, 1,250 and 1,500 rpm, and the time durations of these experiments are 75, 120,165 and 210 min. For protective coating, high-velocity oxygen-fuel spray process was used for depositing WC-10Co-4Cr coating on stainless steel. To investigate the influence of controlled process parameters on slurry erosion wear of pump impeller material, Taguchi method was used.

Findings

Results show that significant improvement in erosion wear resistance has been observed by using WC-10Co-4Cr coating. The process parameters affecting the erosion wear loss were in following order: time > rpm > concentration > particle size. The means of signal-to-noise ratio of stainless steel SS410 with and without coating vary from 93.56 to 54.02 and from 86.02 to 48.18, respectively.

Originality/value

For the erosion wear rate of both uncoated and coated stainless steel, the most powerful influencing factor was identified as time. The erosion test reveals that the coating exhibits ductile erosion mechanism and shows better erosion wear resistance (approximately two times) compared to uncoated stainless steel.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 607