Search results

1 – 10 of over 3000
Article
Publication date: 15 July 2020

Shijo J.S. and Niranjana Behera

The purpose of this paper is to focus on predicting the pressure drop in fluidized dense phase pneumatic conveying of fine particles through pipelines by modelling the solids

Abstract

Purpose

The purpose of this paper is to focus on predicting the pressure drop in fluidized dense phase pneumatic conveying of fine particles through pipelines by modelling the solids friction factor in terms of non-dimensional parameters using experimental data of definite pipeline configuration. Finally, the model is to be tested for a different pipeline configuration.

Design/methodology/approach

Solids friction factor has been expressed in terms of certain non-dimensional parameters such as density ratio, solids loading ratio and mean particle diameter to pipe diameter ratio, and a certain number of coefficients and exponents. Experimental data of five conveying materials (two types of fly ash, two types of alumina and one type of cement meal) for a pipeline configuration of diameter 53 mm and length 173 m and another conveying material EPS dust for two pipeline configurations (69-mm diameter, 168-m long; 105-mm diameter, 168-m long) have been used to calculate the unknown coefficients or exponents of the mathematical model for solids friction factor.

Findings

The developed model gives the best results in predicting the pressure drop for the pipelines that are less than 173-m long, but the model shows a large error for the pipelines more than 173-m long.

Research limitations/implications

Current research will be helpful for the researchers to model the process of pneumatic conveying through long distances.

Practical implications

The method will be helpful in conveying powder materials through long distances in cement or brick industry, alumina industry.

Social implications

Fly ash piles over at the nearby places of thermal power plants. Pneumatic conveying is the best method for transporting the fly ash from the location of power plants to the nearby brick industries or cement industries.

Originality/value

Solid friction factor has been presented in terms of four non-dimensional parameters and evaluated the accuracy in predicting the pressure drop for two different pipeline configurations.

Details

World Journal of Engineering, vol. 17 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 13 November 2017

Seyed Mohammad Arab, Seyed Reza Hosseini Zeidabadi, Seyed Ahmad Jenabali Jahromi, Habib Daneshmanesh, Seyed Mojtaba Zebarjad and Kamal Janghorban

A self-lubricant surface composite including Al matrix and Babbitt alloy 11 reinforcement has been fabricated via friction stir processing (FSP).

Abstract

Purpose

A self-lubricant surface composite including Al matrix and Babbitt alloy 11 reinforcement has been fabricated via friction stir processing (FSP).

Design/methodology/approach

The optimum processing condition is estimated by statistical analysis of a L9 Taguchi design of experiment. The results of Taguchi analysis suggested four passes of FSP, traverse speed of 40 mm/min and rotational speeds of 1,250 rpm as the optimum parameters to achieve higher hardness and wear resistance.

Findings

The needle-shaped particles are fragmented into the finer particles after FSP. There is uniform distribution of precipitations after FSP. The microhardness of manufactured surface bearings has been increased. Finer particles, smaller grains and in situ formed intermetallic precipitations (AlSb) can be responsible for hardness enhancement. Wear resistance of base metal also has been remarkably enhanced after FSP.

Originality/value

The originality of this paper lies in the following: new self-lubricating surface composite; a tough and resistant to wear sheets; and using a solid-state method to fabricate a surface bearing.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 March 2016

Chao Wang, Heyang Yu, Ni Zhan, Xubing Kang and Jingyu Zhang

The purpose of this paper is to develop a new vibration probe sensor for measurement of particle mass flow rate in gas–solid two phase flow.

Abstract

Purpose

The purpose of this paper is to develop a new vibration probe sensor for measurement of particle mass flow rate in gas–solid two phase flow.

Design/methodology/approach

A new vibration probe sensor based on polyvinylidene fluoride (PVDF) piezoelectric film is designed. The particle impact model according to Hertz contacting theory is presented. The average amplitude, standard deviation and spectral peak at the natural frequency of the probe (21.2 kHz) of the signals acquired through experiments are chosen as characteristic quantities for further analysis.

Findings

Through experimental study of relation between three characteristic quantities and the mass flow rate and air flow velocity, a good regularity is found in the average amplitude and the spectral peaks at natural frequency of the probe. According to the particle impact model, the structure of quantitative model is built and parameters of two models are calculated from experimental data. Additionally, tests are made to estimate mass flow rate. The average errors are 5.85 and 4.26 per cent, while the maximum errors are 10.81 and 8.65 per cent. The spectral peak at natural frequency of the probe is more applicable for mass flow rate measurement.

Practical implications

The sensor designed and the quantitative models established may be used in dilute phase pneumatic conveying lines of coal-fired power plants, cement manufacturing facilities and so on.

Originality/value

First, the new sensor is designed and the quantitative models are established. Second, the spectral peak at natural frequency of the probe is found that can be used for measurement of mass flow rate.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1963

E.R. BRAITHWAITE and G.W. ROWE

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the…

Abstract

LONG before man learnt to make fire by the friction of wood, he experienced the burden of friction in dragging home his kill. Perhaps it is not too fanciful to suppose that the torn sides of his beast gave the first solid lubricant. Blood and mutton fat were seriously recommended as lubricants for church bell trunnions as recently as the 17th century. Indoed we still reckon fatty acids the best of all boundary lubricants. The range of man's activities has increased enormously in the present century, and particularly in the last few decades. Men have circled the earth in space; a space ship is on its way to examine another planet; terrestrial man is boring to the bottom of the earth's crust; others have descended to the depths of the ocean, and oven established a home on the floor of the Mediterranean, Speeds have increased by factors of thousands, temperatures range from near absolute zero to thousands of degrees; and a new environment of high‐intensity nuclear radiation has been created. Still, objects must move over and along each other in these exotic conditions; and to a large extent solid lubricants can provide the answer to the frictional problems.

Details

Industrial Lubrication and Tribology, vol. 15 no. 3
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 3 July 2017

Masoud Kharati-Koopaee and Mahsa Rezaee

The purpose of the current research is to study the turbulent flow through microchannels having a micropost in aligned and staggered arrangements.

Abstract

Purpose

The purpose of the current research is to study the turbulent flow through microchannels having a micropost in aligned and staggered arrangements.

Design/methodology/approach

Numerical calculations are performed on the basis of the finite volume approach, which is based on the SIMPLEC algorithm. In this work, the slip velocity, flow velocity distribution and friction factor for the two micropost patterns are examined at friction Reynolds numbers of Reτ = 395 and 590, relative module widths of Wm = 0.1 and 1 and cavity fraction range of Fc = 0.1 to 0.9.

Findings

Results reveal that for the two micropost patterns, as the friction Reynolds number, relative module width or cavity fraction increases, the slip velocity increases and friction factor decreases. It is found that the aligned micropost configuration leads to higher slip velocity and lower friction factor. Numerical findings indicate that the existence of the continuous cavity surface along the flow direction could be a significant criterion to realize if the velocity distribution deviates from that of the smooth channel. It is also shown that the turbulent flows are capable of producing more drag reduction than the laminar ones.

Originality/value

Previous studies have shown that microchannels consisting of a micropost pattern in aligned and staggered arrangements could be viewed as a promising alternative in the microscale flows for the heat removal purposes. Therefore, understanding the fluid flow through microchannels consisting of these configurations (which is a prerequisite to better understand thermal performance of such microchannels) is a significant issue, which is the subject of the present work.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1957

Phosphating mild steel causes the surface to be etched into a network of microscopic channels 0.0004 to 0.0008 in. deep, the phosphate crystals being located on the intervening…

Abstract

Phosphating mild steel causes the surface to be etched into a network of microscopic channels 0.0004 to 0.0008 in. deep, the phosphate crystals being located on the intervening high spots. With this type of surface, running‐in is both rapid and safe and low friction conditions are soon established. The phosphate crystals do not act as a solid lubricant in the same sense as graphite or M0S2; initial friction is higher and final friction is much lower. Friction of MoS2, for example decreases with rubbing by a factor of 4, from 0.2 to 0.05, whereas the friction of phosphated steel decreased by a factor of 60, from 0.3 to 0.005. In addition, the final friction of the run‐in phosphated surface depended on temperature and pressure in a manner characteristic of ‘thin film’ fluid lubrication, not ‘boundary’ or ‘solid’ lubrication.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 5 December 2022

Qibiao Yang, Yunhan You, Bojin Cheng, Lie Chen, Jian Cheng, Deyuan Lou, Yutao Wang and Dun Liu

The purpose of this study is to process the wettability surface of the ZrO2 ceramics to improve their surface friction performance.

Abstract

Purpose

The purpose of this study is to process the wettability surface of the ZrO2 ceramics to improve their surface friction performance.

Design/methodology/approach

Microtexture was processed on the surface of ZrO2 ceramics using a femtosecond laser. The three-dimensional texture morphology, surface contact angle, friction curve and wear morphology were measured by the laser confocal microscope, the contact angle meter, the reciprocating friction and wear tester and the scanning electron microscope, respectively. Based on Wenzel and partial impalement models, a geometric model of micro pits is established to study the influence mechanism of micro pit depth, diameter and distribution density on wettability and to analyze the relationship between surface wettability and tribological properties.

Findings

The results show that changing the geometric characteristics of the texture will lead to a change in the solid-liquid contact mode, and then lead to a change of in the surface contact angle. Wettability is an essential factor that affects the reduction of surface friction. The construction of a reasonable texture can enhance the surface hydrophilicity, which is conducive to the formation of a lubricating film on the ceramic surface, thereby reducing abrasive and adhesive wear, and improving the wear resistance of the ZrO2 ceramic surface.

Originality/value

The results provide a theoretical reference for femtosecond laser surface texture wettability regulation and tribological performance improvement.

Details

Industrial Lubrication and Tribology, vol. 75 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 September 2016

Lei Luo, Chenglong Wang, Lei Wang, Bengt Ake Sunden and Sangtao Wang

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop…

Abstract

Purpose

The dimple is adopted into a double wall cooling structure which is widely used in hot gas components to increase the heat transfer effects with relatively low pressure drop penalty. The purpose of this paper is to study the effect of dimple depth and dimple diameter on the target surface heat transfer and the inlet to outlet friction factor.

Design/methodology/approach

The study is carried out by using the numerical simulations. The impingement flow is directly impinging on the dimple and released from the film holes after passing the double wall chamber. The ratio between dimple depth and dimple diameter is varied from 0 to 0.4 and the ratio between dimple diameter and impingement hole diameter is ranging from 0.5 to 3. The Reynolds number is between 10,000 and 70,000. Results of the target surface Nusselt number, friction factor and flow structures are included. For convenience of comparison, the double wall cooling structure without the dimple is considered as the baseline.

Findings

It is found that the dimple can effectively enhance the target surface heat transfer due to thinning of the flow boundary layer and flow reattachment as well as flow recirculation outside the dimple near the dimple rim especially for the large Re number condition. However, the stagnation point heat transfer is reduced. It is also found that for a large dimple depth or large dimple diameter, a salient heat transfer reduction occurs for the toroidal vortex. The thermal performance indicates that the intensity of the heat transfer enhancement depends upon the dimple depth and dimple diameter

Originality/value

This is the first time to adopt a dimple into a double wall cooling structure. It suggests that the target surface heat transfer in a double wall cooling structure can be increased by the use of the dimple. However, the heat transfer characteristic is sensitive for the different dimple diameter and dimple depth which may result in a different flow behavior

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2019

Seyed Mohammad Mousavi, Omid Ali Akbari, Ghanbarali Sheikhzadeh, Ali Marzban, Davood Toghraie and Ali J. Chamkha

The purpose of this study is two phase modeling of Water/Cu nanofluid forced convection in different arrangements of elliptical tube banks in a two-dimensional space.

Abstract

Purpose

The purpose of this study is two phase modeling of Water/Cu nanofluid forced convection in different arrangements of elliptical tube banks in a two-dimensional space.

Design/methodology/approach

The arrangements of tube banks have been regarded as equal spacing triangle (ES), equilateral triangle (ET) and the rotated square (RS). The obtained results indicate that, among the investigated arrangements, the RS arrangement has the maximum value of heat transfer with cooling fluid. Also, the changes of Nusselt number and the local friction factor are under the influence of three main factors including volume fraction of slid nanoparticles, the changes of fluid velocity parameters on the curved surface of tube and flow separation after crossing from a specified angle of fluid rotation.

Findings

In Reynolds number of 250 and in all arrangements of the tube banks, the behavior of Nusselt number is almost the same and the separation of flow happens in almost 155-165 degrees from fluid rotation on surface. In RS arrangement, due to the strength of vortexes after fluid separation, better mixture is created and because of this reason, after the separation zone, the level of local Nusselt number graph enhances significantly.

Originality/value

In this research, the laminar and two-phase flow of Water/Cu nanofluid in tube banks with elliptical cross section has been numerically investigated in a two-dimensional space with different longitudinal arrangements. In this study, the effects of using nanofluid, different arrangements of tube banks and the elliptical cross section on heat transfer and cooling fluid flow among the tube banks of heat exchanger have been numerically simulated by using finite volume method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1957

A method extensively used in the production of optically flat and finely finished surfaces is that of lapping the surface upon a plate using a loose abrasive mixed into a slurry…

Abstract

A method extensively used in the production of optically flat and finely finished surfaces is that of lapping the surface upon a plate using a loose abrasive mixed into a slurry form with a carrying fluid. If the surfaces finished in this way are in continuous or intermittent sliding contact, it is the author's opinion that any abrasives retained in their surfaces will affect surface wear. This paper reported on some exploratory work to indicate the degree of embedment of abrasive in certain materials lapped by hand.

Details

Industrial Lubrication and Tribology, vol. 9 no. 12
Type: Research Article
ISSN: 0036-8792

1 – 10 of over 3000