Search results

1 – 10 of 742
Article
Publication date: 1 March 1991

M. Warwick and H. Steen

Solder pastes are complex products which are designed to meet the conflicting requirements of printability, slump resistance, good tack and a range of reflow conditions. This…

Abstract

Solder pastes are complex products which are designed to meet the conflicting requirements of printability, slump resistance, good tack and a range of reflow conditions. This paper describes how the metal content and solder particle size distributions in solder pastes affect these properties for a typical RMA type product. The major effects are explained by reference to the purely physical effects of alloy density, metal content and solder powder size on the mean particle separation within the paste. Lower alloy density, high metal content and smaller solder powder size all reduce inter‐particle separations causing viscosity to increase, slump resistance to improve and peak tack force to increase. The paper also discusses the more subtle effects of the chemical interactions between solder powder and flux medium on the same properties. These are illustrated by reference to the changes which take place in performance of a typical solder paste during storage over 12 months. Ageing by solvent loss and rosin drying brought about by the effects of metal soaps formed between solder and activators probably contribute to these changes. Ageing can result in improved performance in tests like slump resistance and consequently solder balling, while in others, such as open time, there is a decrease in performance.

Details

Soldering & Surface Mount Technology, vol. 3 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 13 January 2021

Gui-sheng Gan, Liujie Jiang, Shiqi Chen, Yongqiang Deng, Donghua Yang, Zhaoqi Jiang, Huadong Cao, Mizhe Tian, Qianzhu Xu and Xin Liu

Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too…

Abstract

Purpose

Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too much impact on the improvement of solders’ performance but were difficult to achieve satisfactory results. It is urgent to develop new soldering technology to avoid the bottleneck of lead-free solder. low-temperature-stirring soldering and ultrasonic-assisted soldering was developed in the authors’ early work, but slag inclusion and pore would gather and grow up to lead decreasing of the shear strength. In this paper, Cu/SAC0307 +Zn power/Cu joints with ultrasonic-assisted at low-temperature was successfully achieved.

Design/methodology/approach

45um Zn-powder and SAC0307 No.4 solder powder were mixed to fill the Cu-Cu joint, and the content of Zn-powder were 0 and 5%, 7.5% and 10%, 12.5% and 15% respectively. During the soldering process under ambient atmosphere %252C the heating platform provided a constant 220%253 F and the ultrasonic vibrator applied a constant pressure of 4 MPa to the copper substrate. The soldering process was completed after holding 70 s at 300 W.

Findings

The Zn particles made the IMC at the joint interface and in the soldering seam from scallop-type Cu6Sn5 to flat-type Cu5Zn8. The shear strength of joints without Zn was only 12.43 MPa, the shear strength of joints with 10% Zn reached a peak of 34.25 MPa, and the shear strength of joints containing 10% Zn was 63.71% higher than that of joints without zinc particles, and then the shear strength decreased. In addition, with the increase of zinc content, the fracture mode of the joint changed from the brittle fracture of the original layered tears to the mixed tough and brittle fracture.

Originality/value

A new method that Zn micron-size powders and SAC0307 micron-size powders was mixed to fill the joint, and successfully achieved micro-joining of Cu/Cu under ultrasonic-assisted without flux at low-temperature.

Details

Soldering & Surface Mount Technology, vol. 33 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1993

M. Xiao, K.J. Lawless and N.‐C. Lee

12 mil pitch processing is achievable with solder paste. It may also be the limit of solder paste printing technology, mainly due to the scooping problem associated with thin…

Abstract

12 mil pitch processing is achievable with solder paste. It may also be the limit of solder paste printing technology, mainly due to the scooping problem associated with thin stencils. With decreasing pitch size, both smear and insufficiency rate increase. Tapering of stencil aperture helps thick stencil prints, but has an adverse effect on thin stencil printing. Apertures with orientation parallel to squeegee movement result in a higher print defect rate. Overall, the use of fine powders is the most effective means to meet most challenges. It helps in achieving high performance in printability, tack and non‐slump, with acceptable trade‐offs in rheology and tack time. Solder balling may be the primary drawback. The problem may be resolved by using inert reflow atmosphere or via flux chemistry improvements. A metal load of 90.5 to 91% seems to be the optimum for most properties.

Details

Soldering & Surface Mount Technology, vol. 5 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 18 February 2019

Fen Peng, Wensheng Liu, Yufeng Huang, Siwei Tang, Chaoping Liang and Yunzhu Ma

The purpose of this study is to develop a monolayer surface coating of stearic acid on Sn-Ag-Cu solder powder to limit oxidation.

Abstract

Purpose

The purpose of this study is to develop a monolayer surface coating of stearic acid on Sn-Ag-Cu solder powder to limit oxidation.

Design/methodology/approach

Stearic acid was adsorbed onto Sn-Ag-Cu solder powder through liquid-phase adsorption. The isotherm of adsorption was measured and then the microstructure of coated powder was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy.

Findings

The adsorption isotherm of stearic acid on the powder was “H” type, which revealed the layer-by-layer adsorption on non-porous surface. When the concentration of solution was in the range of 0.001-0.006 mol/L, with an adsorption amount of 0.12 ± 0.1 mg/g, monolayer stearic acid covered the solder powder completely. Uniform and integrated self-assembled monolayer coating was formed through hydrogen bonds between the oxygen ions in surface lattice of Sn3.0Ag0.5Cu solder powder and the —O—H hydroxyl group of stearic acid. The maximum angle of stability of coated powder also reduced by 2.87° compared with that of non-coated powder. The increase rate of oxygen content of coated powder was much slower than that of non-coated powder when they were exposed to humid air.

Originality/value

As a result, oxidation of fine solder powder was effectively limited. Essentially, this method can also be applied to the coating of other types of solder powder and has reference significance to other coating by liquid-phase method.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 6 February 2017

Janusz Sitek, Marek Koscielski, Janusz Borecki and Tomasz Serzysko

The purpose of this paper is to evaluate the influence of solder powders sizes applied in soldering materials used for Package-on-Package (PoP) system manufacture as well as other…

Abstract

Purpose

The purpose of this paper is to evaluate the influence of solder powders sizes applied in soldering materials used for Package-on-Package (PoP) system manufacture as well as other factors on reliability and mechanical strength of created solder joints in three-dimensional (3D) PoP structures.

Design/methodology/approach

The design of experiments based on the Genichi Taguchi method were used in the investigation. The main factors covered different printed circuit board (PCB) coatings, soldering materials with solder powders sizes from Types 3 to 7 and soldering profiles. The reliability of 3D PoP structures was determined by measurements of resistance of daisy-chain solder joints systems during thermal shocks (TS) cycles. The mechanical strength of solder joints in 3D PoP structures was determined by measurements of a shear force of “Top” layer of 3D structures at T0 and after 1,500 TS. The ANOVA was used for results assessment.

Findings

The size of solder powders applied in soldering materials had small (10 per cent) influence on mechanical strength of solder joints in 3D PoP structures. Small size of solder powder had positive effect on solder joints reliability in 3D PoP structures. Especially important was the selection of solder paste for “Bottom” layer of 3D PoP system (influence 17 per cent). Incorrect soldering profile (influence 46 per cent) or wrong selected PCB coating (influence 35 per cent) can very easily reduce the positive impact of soldering materials on solder joints reliability. It was stated that as low as possible soldering profile and organic solderability preservative (OSP) coating in the case of single-sided PCB are the best for 3D PoP structures due to their reliability.

Originality/value

This paper explains how different sizes of solder powders used nowadays in solder pastes influence on reliability and mechanical strength of the solder joints in 3D PoP structures. The contribution, in numerical values, of soldering materials, soldering profile and PCB coating on 3D PoP structures solder joints reliability as well as recommendations improving reliability of 3D PoP structures solder joints were presented.

Details

Soldering & Surface Mount Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1990

A.C. Chilton and K.W. Gaugler

There is continuous pressure in the electronics industry towards miniaturisation. This has led to the development of fine pitch soldered devices, and this paper considers the…

Abstract

There is continuous pressure in the electronics industry towards miniaturisation. This has led to the development of fine pitch soldered devices, and this paper considers the concept of solder creams which use a restrictive flux system as suitable for this work, rather than those that employ finer powder. It is shown that the latter type of solder cream must use metal powders with a higher oxide content which will require the cream to contain a more active flux.

Details

Soldering & Surface Mount Technology, vol. 2 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 28 June 2011

K. Bukat, M. Kościelski, J. Sitek, M. Jakubowska and A. Młożniak

The purpose of this paper is to investigate the influence of silver nanoparticle additions on the wetting properties of Sn‐Ag‐Cu (SAC) solder paste. In this investigation, the…

1106

Abstract

Purpose

The purpose of this paper is to investigate the influence of silver nanoparticle additions on the wetting properties of Sn‐Ag‐Cu (SAC) solder paste. In this investigation, the basic solder paste contained 85 wt.% of commercial Sn 96.5 Ag 3 Cu 0.5 powder (with the particle sizes in the range of 20‐38 μm) and 15 wt.% of self‐prepared middle activated rosin flux. To this paste was added 0.5, 1, 2 and 4 wt.% of self‐prepared silver nano‐powders of different grain sizes (from 9 to 138 nm). After the pastes had stabilized, their wetting properties were tested. The main goal of these investigations was to improve the wetting properties of SAC solder paste and to find correlations between the results of the wetting of solder paste with nanoparticles on the copper substrate with the microstructure of the solder joints.

Design/methodology/approach

The following methods were applied for the wetting solder paste investigation: spreading on the copper substrate, contact angle measurement on the copper and wetting on a FR‐4 laminate double sided with an 18‐μm thick copper foil. The investigations were performed at temperatures of 220, 230, 240 and 250°C. Cross‐sectioning was performed on the solder paste after reflow on the copper substrate. For the microstructural analysis of the “nano” modified solder joints obtained at 250°C, standard metallographic procedures were applied. Changes in the microstructure, the thickness of the inter‐metallic compounds (IMCs) and their chemical compositions were observed by means of scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS).

Findings

As expected, a higher silver nanoparticle addition to the SAC solder paste resulted in better wetting properties on copper. The results indicated the possibility of an improvement of the reflow soldering process by using SAC solder paste with silver nanoparticles and by lowering its soldering temperature. An improvement was also observed in the wettability with a decrease in the silver nanoparticle grain size. Also, the wettability proceeded at a lower temperature (20°C lower) than that for the SAC paste, without the nano‐additives. For the 4 per cent silver nanoparticle addition, Ag3Sn star‐like IMCs were also found, which grew with the lowering of the silver nanoparticle grain size.

Research limitations/implications

Further studies are necessary for confirmation of the practical application, especially of the mechanical properties, as well as the reliability properties of the solder joints, for the chosen solder paste with silver nanoparticles.

Practical implications

Taking into account the wetting data, the best results of the “nano” SAC solder pastes were obtained for the highest addition of the silver nanoparticles. It was found that the spreading on copper was higher and the contact angles were lower for the SAC solder paste with 4 per cent (by wt.) of 138‐nm grain size silver nanoparticles. A comparison of SAC solder pastes with a 4 per cent silver nanoparticle addition but of a different grain size (138‐9 nm), suggested a further improvement in wetting properties with lowering of the silver nanoparticle grain size. The results suggested the possibility of an improvement in the reflow soldering process by using SAC solder paste with silver nanoparticles and by lowering its soldering temperature.

Originality/value

Spreading, wetting and contact angle measurement methods were used for the wetting determination of the SAC solder paste with the silver nanoparticles on copper under the same temperature conditions. Also, the microstructure of the solder joints obtained at 250°C was determined with the use of SEM and EDS methods. The results obtained made it possible to draw conclusions regarding the correlation between the output of the wetting results and the amount and the grain size of the added silver nanoparticles, and also the microstructure and thickness of the IMCs of the “nano” solder joints.

Details

Soldering & Surface Mount Technology, vol. 23 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1995

A.Z. Miric

As electronic devices have become more complex and interconnection density has increased, electronics manufacturers are facing new challenges to solder SMD packages with pitches…

Abstract

As electronic devices have become more complex and interconnection density has increased, electronics manufacturers are facing new challenges to solder SMD packages with pitches down to 0.3 mm or less. To achieve positive results, all parameters throughout the soldering process have to be optimised. The first step on the SMT line is the application of solder paste. Any faults at this stage (material, equipment or process related) will be carried through the entire production line. Solder paste is one of the most important factors in the whole chain. It is important to understand the influence of the metal powders, activators, solvents and additives on soldering of ultra‐fine pitch SMDs. Special attention must be paid to the powder (fine pitch devices demand a fine grain in the solder paste). The reliability of the soldered joints is mainly dependent (apart from on the solder paste) on the solder quantities applied to the component pads, the tolerance regarding the shape and size of stencils + PCBs + SMDs, the accuracy of mounting and printing, and on the reflow profile. It is important to design the stencil apertures with sufficient surface area to provide enough surface tension (between the paste and the component pad) to pull the solder paste out of the stencil, while keeping the component pad small enough to match the lead of the component. As the wetting of fine pitch components is especially critical, it is necessary to pay more attention to the design of the reflow profile. It is recommended to solder ultra‐fine pitch components under nitrogen, as this enlarges the process window considerably.

Details

Soldering & Surface Mount Technology, vol. 7 no. 3
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 6 June 2016

Guang Chen, Li Liu, Vadim V. Silberschmidt, Y.C. Chan, Changqing Liu and Fengshun Wu

This paper aims to systematically study the effect of reinforcement type, processing methods and reflow cycle on actual retained ratio of foreign reinforcement added in solder…

Abstract

Purpose

This paper aims to systematically study the effect of reinforcement type, processing methods and reflow cycle on actual retained ratio of foreign reinforcement added in solder joints.

Design/methodology/approach

Two kinds of composite solders based on SAC305 (wt.%) alloys with reinforcements of 1 wt.% Ni and 1 wt.% TiC nano-particles were produced using powder metallurgy and mechanical blending method. The morphology of prepared composite solder powder and solder pastes was examined; retained ratios of reinforcement (RRoR) added in solder joints after different reflow cycles were analysed quantitatively using an Inductively Coupled Plasma optical system (ICP-OES Varian-720). The existence forms of reinforcement added in solder alloys during different processing stages were studied using scanning electron microscope, X-ray diffractometry and energy dispersive spectrometry.

Findings

The obtained experimental results indicated that the RRoR in composite solder joints decreased with the increase in the number of reflow cycles, but a loss ratio diminished gradually. It was also found that the RRoR which could react with the solder alloy were higher than that of the one that are unable to react with the solder. In addition, compared with mechanical blending, the RRoRs in the composite solders prepared using power metallurgy were relatively pronounced.

Originality/value

Present study offer a preliminary understanding on actual content and existence form of reinforcement added in a reflowed solder joint, which would also provide practical implications for choosing reinforcement and adjusting processing parameters in the manufacture of composite solders.

Details

Soldering & Surface Mount Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 11 February 2020

Norliza Ismail, Azman Jalar, Maria Abu Bakar, Roslina Ismail and Najib Saedi Ibrahim

The purpose of this paper is to investigate the wettability and intermetallic (IMC) layer formation of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint according to the formulation of…

Abstract

Purpose

The purpose of this paper is to investigate the wettability and intermetallic (IMC) layer formation of Sn-3.0Ag-0.5Cu (SAC305)/CNT/Cu solder joint according to the formulation of solder paste because of different types of fluxes.

Design/methodology/approach

Solder pastes were prepared by mixing SAC305 solder powder with different flux and different wt.% of carbon nanotube (CNT). Fourier transform infrared spectroscopy was used to identify functional groups from different fluxes of as-formulated solder paste. The solder pastes were then subjected to stencil printing and reflow process. Solderability was investigated via contact angle analysis and the thickness of cross-sectionally intermetallic layer.

Findings

It was found that different functional groups from different fluxes showed different physical behaviour, indicated by contact angle value and IMC layer thickness. “Aromatic contain” functional group lowering the contact angle while non-aromatic contain functional group lowering the thickness of IMC layer. The higher the CNT wt.%, the lower the contact angle and IMC layer thickness, regardless of different fluxes. Relationship between contact angle and IMC layer thickness is found to have distinguished region because of different fluxes. Thus it may be used as guidance in flux selection for solder paste formulation.

Research limitations/implications

However, detail composition of the fluxes was not further explored for the scope of this paper.

Originality/value

The quality of solder joint of SAC305/CNT/Cu system, as indicated by contact angle and the thickness of IMC layer formation, depends on existence of functional group of the fluxes.

Details

Soldering & Surface Mount Technology, vol. 32 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 742