Search results

1 – 10 of 29
Article
Publication date: 17 April 2024

Bingyi Li, Songtao Qu and Gong Zhang

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide…

Abstract

Purpose

This study aims to focus on the surface mount technology (SMT) mass production process of Sn-9Zn-2.5Bi-1.5In solder. It explores it with some components that will provide theoretical support for the industrial SMT application of Sn-Zn solder.

Design/methodology/approach

This study evaluates the properties of solder pastes and selects a more appropriate reflow parameter by comparing the microstructure of solder joints with different reflow soldering profile parameters. The aim is to provide an economical and reliable process for SMT production in the industry.

Findings

Solder paste wettability and solder ball testing in a nitrogen environment with an oxygen content of 3,000 ppm meet the requirements of industrial production. The printing performance of the solder paste is good and can achieve a printing rate of 100–160 mm/s. When soldering with a traditional stepped reflow soldering profile, air bubbles are generated on the surface of the solder joint, and there are many voids and defects in the solder joint. A linear reflow soldering profile reduces the residence time below the melting point of the solder paste (approximately 110 s). This reduces the time the zinc is oxidized, reducing solder joint defects. The joint strength of tin-zinc joints soldered with the optimized reflow parameters is close to that of Sn-58Bi and SAC305, with high joint strength.

Originality/value

This study attempts to industrialize the application of Sn-Zn solder and solves the problem that Sn-Zn solder paste is prone to be oxidized in the application and obtains the SMT process parameters suitable for Sn-9Zn-2.5Bi-1.5In solder.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 September 2023

Mohamad Solehin Mohamed Sunar, Maria Abu Bakar, Atiqah A., Azman Jalar, Muhamed Abdul Fatah Muhamed Mukhtar and Fakhrozi Che Ani

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Abstract

Purpose

This paper aims to investigate the effect of physical vapor deposition (PVD)-coated stencil wall aperture on the life span of fine-pitch stencil printing.

Design/methodology/approach

The fine-pitch stencil used in this work is fabricated by electroform process and subsequently nano-coated using the PVD process. Stencil printing process was then performed to print the solder paste onto the printed circuit board (PCB) pad. The solder paste release was observed by solder paste inspection (SPI) and analyzed qualitatively and quantitatively. The printing cycle of up to 80,000 cycles was used to investigate the life span of stencil printing.

Findings

The finding shows that the performance of stencil printing in terms of solder printing quality is highly dependent on the surface roughness of the stencil aperture. PVD-coated stencil aperture can prolong the life span of stencil printing with an acceptable performance rate of about 60%.

Originality/value

Stencil printing is one of the important processes in surface mount technology to apply solder paste on the PCB. The stencil’s life span greatly depends on the type of solder paste, stencil printing cycles involved and stencil conditions such as the shape of the aperture, size and thickness of the stencil. This study will provide valuable insight into the relationship between the coated stencil wall aperture via PVD process on the life span of fine-pitch stencil printing.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 September 2022

Guisheng Gan, Shiqi Chen, Liujie Jiang, Cong Liu, Tian Huang, Peng Ma, Dayong Cheng and Xin Liu

This study aims to research properties of Cu/SAC0307 mixed solder balls/Cu joints with different Zn-particles content at low-temperature under ultrasonic assisted.

Abstract

Purpose

This study aims to research properties of Cu/SAC0307 mixed solder balls/Cu joints with different Zn-particles content at low-temperature under ultrasonic assisted.

Design/methodology/approach

A new method that 1µm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 µm were mixed to fill the joint and successfully achieved micro-joining of Cu/Cu under ultrasonic-assisted at low temperature.

Findings

The results showed that with a continuous increase in the Zn-particle content, the interfacial intermetallic compounds (IMCs) of the upper and lower interfaces of joints gradually changed from scallop-shaped Cu6Sn5 to wavy-shaped Cu5Zn8. Moreover, the IMC thickness of the upper/lower interface of joints first decreased and then increased with increasing Zn-particle content. The shear strengths of joints increased with Zn-particle content, the shear strength of joints went to a maximum of 29.76 MPa when the Zn-particle content was 40%, an increase of 62.6% compared to joints without Zn particles. However, as the Zn-particle content continued to increase, the shear strengths of the joints decreased. Additionally, when the Zn content increased to 50%, because the oxidation degree of Zn particles increased, the joints were mainly broken among Zn particles.

Originality/value

A new method that 1µm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 µm were mixed to fill the Cu/Cu joint at 180°C.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 May 2023

Songtao Qu and Qingyu Shi

In the electronic assembly industry, low-temperature soldering holds great potential to be used in surface mounting technology. Tin–bismuth (Sn–Bi) eutectic alloys are lead-free…

Abstract

Purpose

In the electronic assembly industry, low-temperature soldering holds great potential to be used in surface mounting technology. Tin–bismuth (Sn–Bi) eutectic alloys are lead-free solders applied in consumer electronics because of their low melting point, high strength and low cost. This paper aims to investigate how to address the problem of hot tear crack formation during Sn–Bi low-temperature solder (LTS) in the mass production of consumer electronics.

Design/methodology/approach

This paper explored the development of hot tear cracks during Sn–Bi soldering in the fabrication of flip chip ball grid arrays. Experiments were designed to simulate various conditions encountered in Sn–Bi soldering. Quantitative analysis was conducted on the number of hot tear cracks observed in different alloy compositions and solder volumes to explore the primary cause of hot tear cracks and possible methods to suppress crack formation.

Findings

Hot tear cracks existed in Sn–Bi solders with different bismuth (Bi) contents, but increasing the solder volume reduced the number of hot tear cracks. Experiments were designed to test the degree of chip transient thermal warpage with temperature change, and, according to the results, glue was dispensed in specific areas to reduce chip warpage deformation. Finally, the results of combined process experiments pointed to an effective method of low-temperature soldering to suppress hot tear cracks.

Research limitations/implications

The study focuses on Sn–Bi solders only without other solder pastes such as SAC305 or Sn–Zn series.

Practical implications

With the growing popularity of smart electronics, especially in intelligent terminals, new energy vehicles electronics, solar photovoltaic and other field, there will be more and more demand for low- temperature, energy-saving, lead-free solders. Therefore, this study will help the industry to roll out LTS (Sn–Bi) solutions rapidly.

Social implications

In the long term, lean and green manufacturing is expected to be essential for maintaining an advanced manufacturing industry across the world. Developing new LTSs and soldering processes is the most effective, direct solution for energy conservation and emission mitigation. With the growing popularity of smart electronics, especially in intelligent terminals, new energy vehicles and solar photovoltaics, there would be an increased demand for low-temperature, energy-saving, lead-free techniques.

Originality/value

Although there are many methods that can be used to suppress hot tear cracks, there is little research on how to control the hot tear cracks caused by the low-temperature soldering of Sn–Bi in laptop applications. The authors studied the hot tear cracks that developed during the world’s first mass production of 50 million personal laptops based on low-temperature Sn–Bi alloy solder pastes. By controlling the Bi content, redesigning the solder paste printing process (e.g. through a printer’s stencil) and adding dispensing processes, the authors obtained reliable and stable experimental data and conclusions.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 January 2024

Zhenkun Li, Zhili Zhao, Jinliang Liu and Xin Ding

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction…

Abstract

Purpose

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction plunge micro-welding (FPMW) technology without mold assistance, to overcome the problems of low interfacial bonding strength, shrinkage cavities and flash defects caused by the low hold-tight force of solder on the copper column.

Design/methodology/approach

A pressurizing device installed under the drill chuck of the friction welding machine is designed, which is used to apply a static constraint to the solder ball obliquely downward to increase the hold-tight force of the peripheral solder on the copper column during welding and promote the friction metallurgical connection between them.

Findings

The results show that the application of static constraint during welding can increase the compactness of the solder near the friction interface and effectively inhibit occurrences of flash, shrinkage cavities and crystal defects such as vacancies. Therefore, compared with the unconstrained (UC) FPMW, the average strength of the statically constrained (SC) FPMW joints and aged SC-FPMW joints can be increased by 51.1% and 122.6%, and the problem of the excessive growth of the interfacial connection layer in the UC-FPMW joints during aging can be effectively avoided.

Originality/value

The application of static constraint effectively inhibits the occurrence of defects such as shrinkage cavities, vacancies and flash in FPMW joints, and the welding quality is significantly improved.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 September 2023

Zhili Zhao, Mingqiang Zhang, Xi Meng, Zhenkun Li, Jiazhe Li, Luying Qiu and Zeyu Ren

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds…

Abstract

Purpose

The author proposed a friction plunge micro-welding (FPMW) method and applied it to column grid array packaging to realize the connection of copper columns without precision molds assisted positioning. The purpose of this paper is to study the flow behavior of the solder undergoing frictional thermo-mechanical action during the FPMW and to determine the source of the solders in the micro-zones with different microstructure characteristics near the solder/Cu column friction interface.

Design/methodology/approach

Three kinds of Sn58Bi/SAC305 and SAC305/Pb90Sn composite solder samples were designed to study the flow behavior of the solder during FPMW using Bi and Pb as tracer elements.

Findings

The results show that most of the solders in the position occupied by the copper column was softened and plasticized during the welding process and was extruded to side of the copper column, flowing axially, circumferentially and radially along a trajectory similar to a conical spiral line. Under the drive of the tangential friction force and the radial hold-tight force, the extruded out visco-plastic solders fully mixed with the visco-plastic solders on the sides of the copper column, and bonded with the solders that deformed plastically on the periphery, so that a stir zone and a dynamic recrystallization zone finally evolved. The outside plastically deformed solders evolved into a thermo-mechanical affected zone.

Originality/value

The flow behavior of the solder during the FPMW was determined, as well as the source of the solders in micro-zones with different microstructure characteristics.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 March 2023

Y. Wu, Z.J. Zhang, L.D. Chen and X. Zhou

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature…

Abstract

Purpose

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.

Design/methodology/approach

In this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.

Findings

In the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.

Originality/value

Laser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 22 September 2023

Chen Chen, Liang Zhang, Xi Huang and Xiao Lu

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and…

Abstract

Purpose

The purpose of this study is to delve into the mechanism of Si3N4 nanowires (NWs) in Sn-based solder, thereby furnishing a theoretical foundation for the expeditious design and practical implementation of innovative lead-free solder materials in the electronic packaging industry.

Design/methodology/approach

This study investigates the effect of adding Si3N4 NWs to Sn58Bi solder in various mass fractions (0, 0.1, 0.2, 0.4, 0.6 and 0.8 Wt.%) for modifying the solder and joining the Cu substrate. Meanwhile, the melting characteristics and wettability of solder, as well as the microstructure, interfacial intermetallic compound (IMC) and mechanical properties of joint were evaluated.

Findings

The crystal plane spacing and lattice constant of Sn and Bi phase increase slightly. A minor variation in the Sn58Bi solder melting point was caused, while it does not impact its functionality. An appropriate Si3N4 NWs content (0.2∼0.4 Wt.%) significantly improves its wettability, and modifies the microstructure and interfacial IMC layer. The shear strength increases by up to 10.74% when adding 0.4 Wt.% Si3N4 NWs, and the failure mode observed is brittle fracture mainly. However, excessive Si3N4 will cause aggregation at the junction between the solder matrix and IMC layer, this will be detrimental to the joint.

Originality/value

The Si3N4 NWs were first used for the modification of lead-free solder materials. The relative properties of composite solder and joints were evaluated from different aspects, and the optimal ratio was obtained.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 2023

Yangyang Lai and Seungbae Park

This paper aims to propose a method to quickly set the heating zone temperatures and conveyor speed of the reflow oven. This novel approach intensely eases the trial and error in…

Abstract

Purpose

This paper aims to propose a method to quickly set the heating zone temperatures and conveyor speed of the reflow oven. This novel approach intensely eases the trial and error in reflow profiling and is especially helpful when reflowing thick printed circuit boards (PCBs) with bulky components. Machine learning (ML) models can reduce the time required for profiling from at least half a day of trial and error to just 1 h.

Design/methodology/approach

A highly compact computational fluid dynamics (CFD) model was used to simulate the reflow process, exhibiting an error rate of less than 1.5%. Validated models were used to generate data for training regression models. By leveraging a set of experiment results, the unknown input factors (i.e. the heat capacities of the bulkiest component and PCB) can be determined inversely. The trained Gaussian process regression models are then used to perform virtual reflow optimization while allowing a 4°C tolerance for peak temperatures. Upon ensuring that the profiles are inside the safe zone, the corresponding reflow recipes can be implemented to set up the reflow oven.

Findings

ML algorithms can be used to interpolate sparse data and provide speedy responses to simulate the reflow profile. This proposed approach can effectively address optimization problems involving multiple factors.

Practical implications

The methodology used in this study can considerably reduce labor costs and time consumption associated with reflow profiling, which presently relies heavily on individual experience and skill. With the user interface and regression models used in this approach, reflow profiles can be swiftly simulated, facilitating iterative experiments and numerical modeling with great effectiveness. Smart reflow profiling has the potential to enhance quality control and increase throughput.

Originality/value

In this study, the employment of the ultimate compact CFD model eliminates the constraint of components’ configuration, as effective heat capacities are able to determine the temperature profiles of the component and PCB. The temperature profiles generated by the regression models are time-sequenced and in the same format as the CFD results. This approach considerably reduces the cost associated with training data, which is often a major challenge in the development of ML models.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 September 2023

Bifu Xiong, Siliang He, Jinguo Ge, Quantong Li, Chuan Hu, Haidong Yan and Yu-An Shen

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints…

Abstract

Purpose

This paper aims to examine the effects of bonding temperature, bonding time, bonding pressure and the presence of a Pt catalyst on the bonding strength of Cu/SB/P-Cu/SB/Cu joints by transient liquid phase bonding (TLPB).

Design/methodology/approach

TLPB is promising to assemble die-attaching packaging for power devices. In this study, porous Cu (P-Cu) foil with a distinctive porous structure and Sn-58Bi solder (SB) serve as the bonding materials for TLPB under a formic acid atmosphere (FA). The high surface area of P-Cu enables efficient diffusion of the liquid phase of SB, stimulating the wetting, spreading and formation of intermetallic compounds (IMCs).

Findings

The higher bonding temperature decreased strength due to the coarsening of IMCs. The longer bonding time reduced the bonding strength owing to the coarsened Bi and thickened IMC. Applying optimal bonding pressure improved bonding strength, whereas excessive pressure caused damage. The presence of a Pt catalyst enhanced bonding efficiency and strength by facilitating reduction–oxidation reactions and oxide film removal.

Originality/value

Overall, this study demonstrates the feasibility of low-temperature TLPB for Cu/SB/P-Cu/SB/Cu joints and provides insights into optimizing bonding strength for the interconnecting materials in the applications of power devices.

Details

Soldering & Surface Mount Technology, vol. 36 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 29