Search results

1 – 10 of 10
Article
Publication date: 7 August 2017

Deepak Tiwari, Ahmad Faizan Sherwani, Mohammad Asjad and Akhilesh Arora

The purpose of this paper is to investigate the effect of four controllable parameters (fuel mixture, evaporation bubble point temperature, expander inlet temperature and…

Abstract

Purpose

The purpose of this paper is to investigate the effect of four controllable parameters (fuel mixture, evaporation bubble point temperature, expander inlet temperature and condensation dew point temperature) of a solar-driven organic Rankine cycle (ORC) on the first-law efficiency, the exergetic efficiency, the exergy destruction and the volume flow ratio (expander outlet/expander inlet).

Design/methodology/approach

Nine experiments as per Taguchi’s standard L9 orthogonal array were performed on the solar-driven ORC. Subsequently, multi-response optimization was performed using grey relational and principal component analyses.

Findings

The results revealed that the grey relational analysis along with the principal component analysis is a simple as well as effective method for solving the multi-response optimization problem and it provides the optimal combination of the solar-driven ORC parameters. Further, the analysis of variance was also employed to identify the most significant parameter based on the percentage of contribution of each cyclic parameter. Confirmation tests were performed to check the validity of the results which revealed good agreement between predicted and experimental values of the response variables at optimum combination of the input parameters. The optimal combination of process parameters is the set with A3 (the best fuel mixture in the context of optimal performance is 0.9 percent butane and 0.1 percent pentane by weight), B2 (evaporation bubble point temperature=358 K), C1 (condensation dew point temperature=300 K) and D3 (expander inlet temperature=370 K).

Research limitations/implications

In this research, the Taguchi-based grey relational analysis coupled with the principal components analysis has been successfully carried out, whereas for any optimized solution, it is required to have a real-time scenario that may be taken into consideration by the application of different soft computing techniques like genetic algorithm, simulated annealing, etc. The results generated are purely based on theoretical modeling, and, for further research, experimental analyses are required to consolidate the generated results.

Originality/value

This piece of research work will be helpful to users of solar energy, academicians, researchers and other concerned persons, in understanding the importance, severity and benefits obtained by the application, implementation and optimization of the cyclic parameters of the solar-driven ORC.

Details

Grey Systems: Theory and Application, vol. 7 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Content available
Book part
Publication date: 5 June 2023

Abstract

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Article
Publication date: 14 February 2022

Manish Kumar, Arun Arora, Raghwendra Banchhor and Harishankar Chandra

This paper aims to analyze energy and exergy analysis of solar-based intercooled and reheated gas turbine (GT) trigeneration cycle using parabolic trough solar collectors (PTC…

Abstract

Purpose

This paper aims to analyze energy and exergy analysis of solar-based intercooled and reheated gas turbine (GT) trigeneration cycle using parabolic trough solar collectors (PTC) with the use of MATLAB 2018.

Design/methodology/approach

In the first section of this paper, the solar-based GT is validated with the reference paper. According to the reference paper, the solar field is comprising 30 modules in series and 35 modules in parallel series, where a total of 1,050 modules of PTC are taken into consideration. In the second part of this paper, the hybridization of the solar, GT trigeneration cycle is analyzed and optimized. In the last section of this paper, the hybridization of solar, intercooled and reheated GT trigeneration systems is examined and compared.

Findings

The results examined the first section, the power produced by the cycle will be 37.34 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and the efficiencies of energy and exergy will be 38.34% and 39.76%, respectively. The results examined in the second section, the power produced by the cycle will be 38.4 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and accordingly the efficiency of energy and exergy is found to be 40.011% and 41.763%. Where in the last section, the power produced by the cycle will be 41.43 MW at 0.5270 kg/s mass flow rate of the natural gas consumption and the energy and exergy efficiencies will be 39.76% and 40.924%, respectively.

Originality/value

The author confirms that this study is original and has neither been published elsewhere nor it is currently under consideration for publication elsewhere.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 October 2019

Ayush Varshney, Arshad H. Khan, M. Yaqoob Yasin, Zahid A. Khan and Mohammad Asjad

The purpose of this paper is to present the multi-objective optimization of the dynamic response of isotropic and laminated composite folded plates. The dynamic analysis has been…

Abstract

Purpose

The purpose of this paper is to present the multi-objective optimization of the dynamic response of isotropic and laminated composite folded plates. The dynamic analysis has been carried out using the finite element method based on the first-order shear deformation theory.

Design/methodology/approach

Hamilton’s principle has been employed for the derivation of the governing equations. Natural frequencies are obtained using the eigenvalue extraction method. The optimal combination of the crank angle, lamination scheme and boundary conditions on the natural frequencies of folded plates for their safe and optimal dynamic design has been obtained. The analysis has been carried out using finite element approach based on FSDT to obtain the dynamic equation of single- and double-fold laminated plates. In total, 15 experiments as per Taguchi’s standard L15 orthogonal array have been performed. Further, standard deviation (SD) based TOPSIS method is used to perform multi-response optimization of folded plates in order to rank the combination of the input parameters.

Findings

SD integrated with TOPSIS reveals that Experiment No. 8 (crank angle=90° and anti-symmetric lamination scheme=0°/90°/0°/90°), Experiment No. 14 (crank angle=150° and anti-symmetric lamination scheme=0o/90o/0o/90o), Experiment No. 2 (crank angle=30° and anti-symmetric lamination scheme=0°/90°/0°/90°) and Experiment No. 3 (crank angle=30° and symmetric lamination scheme=0°/90°/0°/90°) occupy rank 1 for one fold, one end clamped, one fold, two ends clamped, two folds, one end clamped and two folds, two ends clamped conditions, respectively, in order to maximize the modal response corresponding to the fundamental mode.

Originality/value

SD-based technique for order of preference by similarity to ideal solution (TOPSIS) method is used to rank the process parameters. The optimum combination of the input parameters on the multi-response optimization of dynamics of the folded plates has also been evaluated using the analysis of mean (ANOM).

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 July 2020

Mohd Seraj, Syed Mohd Yahya, Mohd Anas, Agung Sutrisno and Mohammad Asjad

In the present study, the thermal performance of engine radiator using conventional coolant and nanofluid is determined experimentally for the different flow rates. Further, the…

Abstract

Purpose

In the present study, the thermal performance of engine radiator using conventional coolant and nanofluid is determined experimentally for the different flow rates. Further, the study implemented the Integrated Taguchi-GRA-PCA for optimising the heat transfer performance.

Design/methodology/approach

Nanofluids were prepared by taking ethylene glycol and water (25:75 by volume) with volume fraction of 0.01, 0.03 and 0.05% of TiO2 nanopowder. Experimental Data were collected based on the design of experiments (DOE) L9 orthogonal array using Taguchi method. Statistical analysis via Grey relation analysis (GRA) and principal component analysis (PCA) were done to determine the role of experimental parameters on heat transfer coefficient and rate of heat transfer. Impact of three control factors, vol. % of TiO2 concentration (φ), flow rate (LPH), and sonication time (min) on the performance characteristics on heat transfer coefficient and ratio of heat transfer rate is analysed to get the best combination of the parameters involved.

Findings

Analysis revealed the importance of parameters on heat transfer coefficient and can be sorted in terms of contributions from higher to lower degree. Finally, ANOVA test has been conducted to validate the effect of process parameters. The major controllable parameter is φ (concentration), contributing about 32.74%, then flow rate contributing 32.5% and finally sonication time showing small contribution of 18.57%.

Originality/value

A grey relational analysis integrated with principal component analyses (PCA) are implemented to get the optimum heat transfer coefficient and ratio of heat transfer rate. The novelty of the work is to adopt and implement the Integrated Taguchi-GRA-PCA first time for the purpose of thermal performance analysis of engine nano-coolant for radiator.

Details

Grey Systems: Theory and Application, vol. 11 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 31 October 2022

Ajith Tom James, Mohammad Asjad and Rahul Panchal

Automobile maintenance garages require varieties of equipment for their smooth functioning. However, the purchase of the right equipment from alternatives is a tough task as it…

Abstract

Purpose

Automobile maintenance garages require varieties of equipment for their smooth functioning. However, the purchase of the right equipment from alternatives is a tough task as it depends on several economic, technical, and environmental considerations, etc. Moreover, there are different sellers for such equipment, whose features would be satisfying the purchase criteria in varying levels or degrees. Hence, this purchase decision becomes a complex decision-making problem.

Design/methodology/approach

An integrated multi-criteria decision-making approach that includes the combination of fuzzy AHP (analytic hierarchy process) and GRA (grey relational analysis) is used for the purchase decision-making of garage equipment. Various purchase decision criteria regarding garage equipment are assimilated through literature and interaction with garage professionals. The weightage of each purchase criteria of garage equipment is derived using fuzzy AHP. After the establishment of weights, various equipment suppliers are evaluated according to their conformance to the criteria using the GRA method.

Findings

The methodology of FAHP helped in ranking the different purchasing criteria based on their importance. It follows the following sequence: cost of ownership, technical specifications, operational characteristics, reliability and maintenance, after-sales support, commercial features, environmental pollution, and end of life characteristics. GRA methodology has been applied for the purchase of the best common rail test bench among alternatives according to their fulfillment of the purchase criteria requirements that are evaluated by a team of experts.

Originality/value

The integrated approach developed in this work for garage equipment purchase will help garage management to prioritize each supplier of the equipment based on their level of conformance to the purchase criteria.

Details

Grey Systems: Theory and Application, vol. 13 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 23 September 2019

Bingjun Li and Xiaoxiao Zhu

The purpose of this paper is to put forward the grey relational decision-making model of three-parameter interval grey number based on Analytic Hierarchy Process (AHP) and Data…

Abstract

Purpose

The purpose of this paper is to put forward the grey relational decision-making model of three-parameter interval grey number based on Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA), based on the previous study of grey relational decision-making model, and it considers the advantages of the decision-making schemes and the subjective preferences of decision makers.

Design/methodology/approach

First of all, through AHP, the preference of each index is analyzed and the index weight is determined. Second, the DEA model is adopted to obtain the index weight from the perspective of the most beneficial to each scheme and objectively reflect the advantages of different schemes. Then, assign the comprehensive weights to each index of the grey relational decision-making model of three-parameter interval grey number, and calculate the grey relation degree of each scheme to rank the schemes.

Findings

The effectiveness of the model is proved by an example of carrier aircraft selection.

Practical implications

The applicability of this model is analyzed by taking carrier aircraft selection as an example. In fact, this model can also be widely used in agriculture, industry, economy, society and other fields.

Originality/value

In this paper, the combination of AHP and DEA is used to determine the index weight. Based on which, the grey relation degree under the three-parameter interval grey number is calculated. It intended the application space of the grey relational decision-making model.

Details

Grey Systems: Theory and Application, vol. 10 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 14 July 2020

Mohammadreza Salehi, Nader Pourmahmoud, Amir Hassanzadeh, S. Hoseinzadeh and P.S. Heyns

Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field…

Abstract

Purpose

Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field behaviors such as Mach number; pressure; and temperature.

Design/methodology/approach

To investigate the effect of throat diameter, it is simulated for 4, 6, 8 and 10 mm as throat diameters. The governing equations have been solved by standard code of Fluent Software together with a compressible 2 D symmetric and turbulence model with the standard k–ε model. First, the influence of the throat diameter is investigated by keeping the inlet mass flow constant.

Findings

The results show that a place of shock wave creation is changed by changing the throat diameter. The obtained results illustrate that the maximum amount of Mach number is dependent on the throat diameter. It is obtained from the results that for smaller throats higher Mach numbers can be obtained. Therefore, for mixing purposes smaller throats and for exhausting bigger throats seems to be appropriate.

Originality/value

The obtained numerical results are compared to the existing experimental ones which show good agreement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 August 2019

Abbas Naeimi, Mohammad Hossein Ahmadi, Milad Sadeghzadeh and Alibakhsh Kasaeian

This paper aims to determine the optimum arrangement of a reverse osmosis system in two methods of plug and concentrate recycling.

Abstract

Purpose

This paper aims to determine the optimum arrangement of a reverse osmosis system in two methods of plug and concentrate recycling.

Design/methodology/approach

To compare the optimum conditions of these two methods, a seawater reverse osmosis system was considered to produce fresh water at a rate of 4,000 m3/d for Mahyarkala city, located in north of Iran, for a period of 20 years. Using genetic algorithms and two-objective optimization method, the reverse osmosis system was designed.

Findings

The results showed that exergy efficiency in optimum condition for concentrate recycling and plug methods was 82.6 and 92.4 per cent, respectively. The optimizations results showed that concentrate recycling method, despite a 36 per cent reduction in the initial cost and a 2 per cent increase in maintenance expenses, provides 6 per cent higher recovery and 19.7 per cent less permeate concentration than two-stage plug method.

Originality/value

Optimization parameters include feed water pressure, the rate of water return from the brine for concentrate recycling system, type of SW membrane, feedwater flow rate and numbers of elements in each pressure vessel (PV). These parameters were also compared to each other in terms of recovery (R) and freshwater unit production cost. In addition, the exergy of all elements was analyzed by selecting the optimal mode of each system.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 June 2023

Mohamed Elmnefi and Waqas Al-Khazraji

One of the existing and commonly used solar energy harvesting devices is the parabolic trough solar collector (PTSC). Because of their ability to operate in low and medium…

Abstract

Purpose

One of the existing and commonly used solar energy harvesting devices is the parabolic trough solar collector (PTSC). Because of their ability to operate in low and medium temperatures, parabolic trough concentrators are widely used in power generation plants and industrial process heating applications. Therefore, the investigation of how different operating conditions affect these devices’ overall efficiency has received a great deal of attention in the recent decade. This study aims to enhance the thermal performance of the PTSC and reduce the system cost.

Design/methodology/approach

In the novel configuration, a noncirculated nanofluid absorbs solar radiation through a glass wall. The base fluid was synthetic oil (5W30), and the nanoparticles used were copper oxide. The heat captured is immediately absorbed by the water circulating inside the copper tube immersed in the nanofluid. ANSYS FLUENT 15.0 was used for carrying out computational fluid dynamics simulations for two models of single and triple copper tubes. The experimental results obtained from a test rig constructed for this purpose were compared with the numerical outcomes of the single copper tube model.

Findings

The findings of the simulation demonstrated that performance was superior for the single copper tube model over the triple copper tube model. The numerical findings of the single copper tube model were compared with the experimental results. The numerical and experimental results differed from 3.17% to 5.6%. Investigations were carried out to study the effects of varying the volumetric flow rate of (20, 40, 60 and 80 L/h) and water inlet temperatures of (300, 315 and 330 K) on the effectiveness and performance of the newly developed model. Additionally, two nanofluid volume fractions of 0.05% and 0.075% were used for investigating their effect on the performance of the novel configuration. According to the findings, the highest thermal efficiency of 55.31% was recorded at 0.075% concentration and 80 L/h volume flow rate.

Originality/value

In this study, a novel direct absorption solar collector configuration using a noncirculated nanofluid was designed to enhance the thermal efficiency of PTSC. This new approach makes it possible to boost the thermal performance of the PTSC and lower the system’s cost.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 10