Search results

1 – 10 of 872
Article
Publication date: 30 December 2022

Subbarama Kousik Suraparaju, Arjun Singh K., Vijesh Jayan and Sendhil Kumar Natarajan

The utilisation of renewable energy sources for generating electricity and potable water is one of the most sustainable approaches in the current scenario. Therefore, the current…

Abstract

Purpose

The utilisation of renewable energy sources for generating electricity and potable water is one of the most sustainable approaches in the current scenario. Therefore, the current research aims to design and develop a novel co-generation system to address the electricity and potable water needs of rural areas.

Design/methodology/approach

The cogeneration system mainly consists of a solar parabolic dish concentrator (SPDC) system with a concentrated photo-voltaic module at the receiver for electricity generation. It is further integrated with a low-temperature thermal desalination (LTTD) system for generating potable water. Also, a novel corn cob filtration system is introduced for the pre-treatment to reduce the salt content in seawater before circulating it into the receiver of the SPDC system. The designed novel co-generation system has been numerically and experimentally tested to analyse the performance at Karaikal, U.T. of Puducherry, India.

Findings

Because of the pre-treatment with a corn cob, the scale formation in the pipes of the SPDC system is significantly reduced, which enhances the efficiency of the system. It is observed that the conductivity, pH and TDS of seawater are reduced significantly after the pre-treatment by the corncob filtration system. Also, the integrated system is capable of generating 6–8 litres of potable water per day.

Originality/value

The integration of the corncob filtration system reduced the scaling formation compared to the general circulation of water in the hoses. Also, the integrated SPDC and LTTD systems are comparatively economical to generate higher yields of clean water than solar stills.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 28 February 2023

Mohammed Jawad Abed and Anis Mhalla

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Abstract

Purpose

The paper aims to present a grid-connected multi-inverter for solar photovoltaic (PV) systems to enhance reliability indices after selected the placement and level of PV solar.

Design/methodology/approach

In this study, the associated probability is calculated based on the solar power generation capacity levels and outages conditions. Then, based on this probability, dependability indices like average energy not supplied (AENS), expected energy not supplied and loss of load expectations (LOLE) are computed, also, another indices have been computed such as (customer average interruption duration index (CAIDI), system average interruption frequency index (SAIFI) and system average interruption duration index (SAIDI)) addressing by affected customers with distribution networks reliability assessment, including PV. On the basis of their dependability indices and active power flow, several PV solar modules installed in several places are analyzed. A mechanism for assessing the performance of the grid's integration of renewable energy sources is also under investigation.

Findings

The findings of this study based on data extracted form a PV power plant connected to the power network system in Diyala, Iraq 132 kV, attempts to identify the system's weakest points in order to improve the system's overall dependability. In addition, enhanced reliability indices are given for measuring solar PV systems performance connected to the grid and reviewed for the benefit of the customers.

Originality/value

The main contributions of this study are two methods for determining the reliability of PV generators taking into consideration the system component failure rates and the power electronic component defect rates in a PV system which depend on the power input and the power loss using electrical transient analysis program (ETAP) program.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 1
Type: Research Article
ISSN: 1985-9899

Keywords

Case study
Publication date: 26 February 2024

Arpita Amarnani, Umesh Mahtani and Vithal Sukhathankar

The learning outcomes of this study are to identify and discuss ways in which energy consumption in a residential educational institute can be reduced by improving demand-side…

Abstract

Learning outcomes

The learning outcomes of this study are to identify and discuss ways in which energy consumption in a residential educational institute can be reduced by improving demand-side energy management for sustainable development; summarise the challenges that an institute faces in transitioning to a more environmentally friendly mode of operations concerning energy management; illustrate the difference between operating expense and capital expenditure methods used for solar rooftop projects from the perspective of Goa Institute of Management (GIM); and analyse different project proposals for solar rooftop power generation energy using capital budgeting techniques.

Case overview/synopsis

Dr Ajit Parulekar, director at GIM, was evaluating the steps taken over the past few years for sustainable energy management to understand their impact and consider ways in which to take the environmental sustainability agenda forward. One of the projects that he was considering was the rooftop solar power plant. GIM had received proposals from several different vendors and evaluated three proposals out of these. He needed to decide on the capacity of the rooftop solar power generation and the type of contract that he should get into for the implementation of the project. This case study describes the differences and highlights the advantages and disadvantages of all the mentioned models with respect to GIM.

Complexity academic level

This case study is suitable for post-graduate level management students, as well as for undergraduate-level finance and management students.

Supplementary material

Teaching notes are available for educators only.

Subject code

CSS4: Environmental management.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 19 December 2022

Mohammad Fathi, Roya Amjadifard, Farshad Eshghi and Manoochehr Kelarestaghi

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs…

Abstract

Purpose

Photovoltaic (PV) systems are experiencing exponential growth due to environmental concerns, unlimited and ubiquitous solar energy, and starting-to-make-sense panel costs. Alongside designing more efficient solar panels, installing solar trackers and special circuitry for optimizing power delivery to the load according to a maximum power point tracking (MPPT) algorithm are other ways of increasing efficiency. However, it is critical for any efficiency increase to account for the power consumption of any amendments. Therefore, this paper aims to propose a novel tracker while using MPPT to boost the PV system's actual efficiency accounting for the involved costs.

Design/methodology/approach

The proposition is an experimental pneumatic dual-axis solar tracker using light-dependent resistor (LDR) sensors. Due to its embedded energy storage, the pneumatic tracker offers a low duty-cycle operation leading to tracking energy conservation, fewer maintenance needs and scalability potential. While MPPT assures maximum load power delivery, the solar PV's actual delivered power is calculated for the first time, accounting for the solar tracking and MPPT power costs.

Findings

The experiments' results show an increase of 37.6% in total and 35.3% in actual power production for the proposed solar tracking system compared to the fixed panel system, with an MPPT efficiency of 90%. Thus, the pneumatic tracking system offers low tracking-energy consumption and good actual power efficiency. Also, the newly proposed pneumatic stimulant can significantly simplify the tracking mechanism and benefit from several advantages that come along with it.

Originality/value

To the best of the authors’ knowledge, this work proposes, for the first time, a single-motor pneumatic dual-axis tracker with less implementation cost, less frequent operation switching and scalability potential, to be developed in future works. Also, the pneumatic proposal delivers high actual power efficiency for the first time to be addressed.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2023

Parveen Kumar, Pankaj Kumar and Vaibhav Aggarwal

This study aims to examine the determinants of adoption intention toward the rooftop solar photovoltaic (RSPV) systems among residents of peri-urban villages of Gurugram, Haryana…

Abstract

Purpose

This study aims to examine the determinants of adoption intention toward the rooftop solar photovoltaic (RSPV) systems among residents of peri-urban villages of Gurugram, Haryana, India. This study also analyzes the impact of the adoption of RSPV systems on carbon neutrality from a behavioral perspective.

Design/methodology/approach

Data was collected using a self-administrated structured questionnaire from 208 male villagers (195 usable) of 22 villages using the purposive sampling technique.

Findings

Results revealed that relative advantage, followed by simplicity, trialability, observability and compatibility, positively and significantly impact villagers’ attitude toward adopting RSPV systems in their homes. Perceived severity and perceived vulnerability significantly influence the perceived behavioral control of villagers toward adopting the RSPV systems. The results show villagers’ attitudes, subjective norms and perceived behavioral control are the essential predictors of their adoption intention of the RSPV systems. Most notably, carbon neutrality was significantly affected by villagers’ adoption intention of RSPV systems as the renewable energy source in their homes.

Originality/value

The findings of this study provide that innovation attributes are important factors in shaping the adoption intentions of customers toward RSPV systems. This study is also the extent of previous studies measuring customers’ perception of adopting renewable energy in developed and emerging countries worldwide.

Details

International Journal of Energy Sector Management, vol. 18 no. 1
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 13 November 2023

Thisara Manupriya Sathkumara, Anuradha Samarajeewa Waidyasekara and Hasith Chathuranga Victar

The use of renewable energy has become necessary because of the harmful effects of current energy sources on the environment, limited availability and financial crisis…

Abstract

Purpose

The use of renewable energy has become necessary because of the harmful effects of current energy sources on the environment, limited availability and financial crisis. Transparent solar panels have emerged as a promising technology for integrating renewable energy generation into building structures. Therefore, this paper aims to explore the feasibility of transparent solar panels for high-rise building façades in Sri Lanka.

Design/methodology/approach

The research apprehended a qualitative approach, including two expert interview rounds adhering to the Delphi technique with 17 and 15 experts each per round. Manual content analysis was incorporated to analyse the collected data.

Findings

Regarding operation and maintenance, the study emphasizes the importance of regular inspection, cleaning and repair of transparent solar panels to ensure optimal performance and longevity. These activities contribute to maximizing energy generation and maintaining the aesthetic appeal of the building. The benefits of implementing transparent solar panels on building façades are manifold. They include renewable energy generation, reduced greenhouse gas emissions, improved energy efficiency and enhanced architectural aesthetics. Furthermore, the research findings underscore the potential of transparent solar panels to contribute to Sri Lanka’s sustainable development goals and address the country’s increasing energy demand. However, the study also identifies challenges that need to be addressed for successful implementation.

Originality/value

This study contributes to understanding the feasibility of transparent solar panels for high-rise building façades in Sri Lanka. The research findings offer valuable insights into the operation and maintenance aspects, benefits, challenges and strategies for implementing transparent solar panels effectively. This knowledge can guide policymakers, architects and developers in making informed decisions regarding the integration of transparent solar panels, thereby promoting sustainable and energy-efficient building practices in Sri Lanka.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Expert briefing
Publication date: 18 April 2024

In March, Sonelgaz awarded 19 contracts for the installation of almost 3 gigawatts of solar power generation capacity. Increasing the renewables mix in Algeria's energy balance…

Details

DOI: 10.1108/OXAN-DB286498

ISSN: 2633-304X

Keywords

Geographic
Topical
Article
Publication date: 8 April 2022

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Non-linear power–voltage characteristics of solar cell and frequently changing output due to variation in solar irradiance caused by movement of clouds are the major issues need…

Abstract

Purpose

Non-linear power–voltage characteristics of solar cell and frequently changing output due to variation in solar irradiance caused by movement of clouds are the major issues need to be considered in photovoltaic (PV) penetration to maintain the power quality of the grid. It is important for a PV module to always function at its maximum available power point to increase the efficiency and to maintain the grid stability. A possible solution to mitigate these generation fluctuations is the use of an electric double-layer capacitor or supercapacitor energy storage device, which is an efficient storage device for power smoothing applications. This study aims to propose a power smoothing control approach to smoothen out the output power variations of a solar PV system using a supercapacitor energy storage device.

Design/methodology/approach

To extract the maximum possible power from a PV panel, there are several maximum power points tracking (MPPT) algorithms developed in literature. Fuzzy logic controller-MPPT method is used in this work as it is a very efficient and popular technique which responds quickly under varying ecological conditions, reduced computational complexity and does not depend on any system constraints. Fuzzy logic-based MPPT controller by Boost DC–DC converter is developed for operating the PV panels at available maximum power point. Fuzzy logic-proportional integral (PI) charge controller is implemented by Buck–Boost converter to provide the constant current and suitable voltage for supercapacitor and to achieve better power smoothing. PI charge controller is preferred in this work as it offers better outcomes and is very easy to implement.

Findings

Simulation results conclude that the proposed power smoothing control approach can efficiently smooth out the power variations under variable irradiance and temperature situations. To confirm the accurateness of the proposed system, it is validated for poly-crystalline PV module and comparison of results is done by using different case study with and without the use of an energy storage system under change in irradiance condition. The proposed system is developed and examined on MATLAB/Simulink environment.

Originality/value

The performance comparison between PV power output with and without the use of a supercapacitor energy storage device under different Case Studies shows that the improved performance in smoothing of power output was achieved with the use of a supercapacitor energy storage device.

Book part
Publication date: 4 March 2024

Diana Baus and Damir Krešić

This chapter examines the potential of solar energy for the development of sustainable tourism in Croatia. Tourism is an important economic activity in the Croatian economy due to…

Abstract

This chapter examines the potential of solar energy for the development of sustainable tourism in Croatia. Tourism is an important economic activity in the Croatian economy due to the mild climate and many sunny days. Solar energy photovoltaic and thermal systems can help to support sustainable tourism, as well as increase employment and cooperation between local and national governments. This study compares best practices in solar energy for the Mediterranean countries of Italy, Spain, Cyprus, and Greece. The Mediterranean Basin is a strategic development area for the European Union, and solar energy will help to maintain its stability and high-quality standards of living.

Article
Publication date: 5 April 2024

Diyana Sheharee Ranasinghe and Navodana Rodrigo

Blockchain for energy trading is a trending research area in the current context. However, a noticeable gap exists in the review articles focussing on solar energy trading with…

Abstract

Purpose

Blockchain for energy trading is a trending research area in the current context. However, a noticeable gap exists in the review articles focussing on solar energy trading with blockchain technology. Thus, this study aims to systematically examine and synthesise the existing research on implementing blockchain technology in sustainable solar energy trading.

Design/methodology/approach

The study pursued a systematic literature review to achieve its aim. The data extraction process focussed on the Scopus and Web of Science (WoS) databases, yielding an initial set of 129 articles. Subsequent screening and removal of duplicates led to 87 articles for bibliometric analysis, utilising VOSviewer software to discern evolutionary progress in the field. Following the establishment of inclusion and exclusion criteria, a manual content analysis was conducted on a subset of 19 articles.

Findings

The results indicated a rising interest in publications on solar energy trading with blockchain technology. Some studies are exploring the integration of new technologies like machine learning and artificial intelligence in this domain. However, challenges and limitations were identified, such as the absence of real-world solar energy trading projects.

Originality/value

This study offers a distinctive approach by integrating bibliometric and manual content analyses, a methodology seldom explored. It provides valuable recommendations for academia and industry, influencing future research and industry practices. Insights include integrating blockchain into solar energy trading and addressing knowledge gaps. These findings advance societal goals, such as transitioning to renewable energy sources (RES) and mitigating carbon emissions, fostering a sustainable future.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 872