Search results

11 – 20 of over 2000
Article
Publication date: 11 September 2019

Ceyda Aksoy Tırmıkçı and Cenk Yavuz

The purpose of this paper is to propose a fixed PV energy system design and a sun tracking PV energy system design to meet the primitive energy demands of a typical house in…

Abstract

Purpose

The purpose of this paper is to propose a fixed PV energy system design and a sun tracking PV energy system design to meet the primitive energy demands of a typical house in Sakarya, Turkey with energy payback times (EPBT) and greenhouse payback times (GPBT) calculations.

Design/methodology/approach

The designs were developed based on the total solar radiation received on the surface of the PV modules. The EPBT and the GPBT of the designs were investigated by utilizing the current embodied energy data of the literature and annual energy output of the proposed systems. The monthly mean total solar radiation, the yearly total solar radiation and the annual energy output of the systems were calculated according to the results of previous studies of authors on 80-W prototypes of a fixed PV energy system tilted at the yearly optimum tilt angle of Sakarya and a two-axis sun tracking PV energy system.

Findings

The annual energy outputs of the fixed system and the tracking system were established to be 10.092 and 10.311 MJ, respectively. EPBT of the systems were estimated 15.347 years for the fixed system and 11.932 years for the tracking systems which were less than the lifespan of PV modules. The greenhouse gas emitted to produce and install the systems were estimated to be 6,899.342 kg for the fixed system and 5,040.097 kg for the tracking system. GPBT of the systems were calculated to be 5.203 and 2.658 years, respectively.

Originality/value

PV energy is clean without greenhouse gas emission during the operation. However, significant emissions occur in the life cycle of PV modules until the installation is completed. Therefore reducing the number of PV modules make great differences in the GPBT of PV energy systems. In this paper, comparisons between the GPBT results of the optimally tilted fixed system and tracking system were performed to discuss the best option by means of environmental concerns.

Details

Smart and Sustainable Built Environment, vol. 8 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 11 January 2022

Z. Ebrahimpour, Seyyed Ali Farshad and M. Sheikholeslami

This paper scrutinizes exergy loss and hydrothermal analysis of Linear Fresnel Reflector (LFR) unit by means of FLUENT. Several mirrors were used to guide the solar radiation

99

Abstract

Purpose

This paper scrutinizes exergy loss and hydrothermal analysis of Linear Fresnel Reflector (LFR) unit by means of FLUENT. Several mirrors were used to guide the solar radiation inside the receiver, which has parabolic shape. Radiation model was used to simulate radiation mode.

Design/methodology/approach

Heat losses from receiver should be minimized to reach the optimized design. Outputs were summarized as contours of incident radiation, isotherm and streamline. Outputs were classified in terms of contours and plots to depict the influence of temperature of hot wall, wind velocity and configurations on performance of Linear Fresnel Reflector (LFR) based on thermal and exergy treatment. Four arrangements for LFR units are considered and all of them have same height.

Findings

Greatest Nu and Ex can be obtained for case D due to the highest heat loss from hot wall. Share of radiative heat flux relative to total heat flux is about 94% for case D. In case D when Tr = 0.388, As hext rises from 5 to 20, Nutotal enhances about 11.42% when Tr = 0.388. By selecting case D instead of case A, Ex rises about 16.14% for lowest Tr. Nutotal and Ex of case D augment by 3.65 and 6.23 times with rise of Tr when hext = 5. To evaluate the thermal performance (ηth) of system, absorber pipe was inserted below the parabolic reflector and 12 mirrors were used above the ground. The outputs revealed that ηth decreases about 14.31% and 2.54% with augment of Tin and Q if other factors are minimum.

Originality value

This paper scrutinizes exergy loss and hydrothermal analysis of LFR unit by means of finite volume method. Several mirror used to guide the solar radiation inside the receiver, which has parabolic shape. DO model was used to simulate radiation mode. Heat losses from receiver should be minimized to reach the optimized design. Outputs were summarized as contours of incident radiation, isotherm and streamline.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 October 2017

Kamel Milani Shirvan, Mojtaba Mamourian, Soroush Mirzakhanlari, A.B. Rahimi and R. Ellahi

The purpose of this paper is to present the numerical solutions of surface radiation and combined natural convection heat transfer in a solar cavity receiver. The paper aims to…

Abstract

Purpose

The purpose of this paper is to present the numerical solutions of surface radiation and combined natural convection heat transfer in a solar cavity receiver. The paper aims to discuss sundry issues that take place in the said model.

Design/methodology/approach

The numerical solutions are developed by means of second-order upwind scheme using the SIMPLE algorithm.

Findings

The effects of physical factors such as Rayleigh number (104 ≤ Ra ≤ 106), inclination angels of insulated walls (0º ≤ θ ≤ 10º) and the wall surface emissivity (0 ≤ ε ≤ 1) on natural convection-surface radiation heat transfer rate are analyzed. Impact of sundry parameters on flow quantities are discussed and displayed via graphs and tables. Stream lines and isothermal lines have also been drawn in the region of cavity. The numerical results reveal that increasing the Rayleigh number, wall surface emissivity and inclination angels of insulated walls in an open cavity enhances the mean total Nusselt number. The variations of the surface radiation and natural convection heat transfer mean Nusselt numbers are very small to the inclination angle of θ, while a significant change is noted for the case of Rayleigh number and emissivity.

Originality/value

To the best of authors’ knowledge, this model is reported for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 March 2024

Kalidas Das and Pinaki Ranjan Duari

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced…

19

Abstract

Purpose

Several graphs, streamlines, isotherms and 3D plots are illustrated to enlighten the noteworthy fallouts of the investigation. Embedding flow factors for velocity, induced magnetic field and temperature have been determined using parametric analysis.

Design/methodology/approach

Ternary hybrid nanofluids has outstanding hydrothermal performance compared to classical mono nanofluids and hybrid nanofluids owing to the presence of triple tiny metallic particles. Ternary hybrid nanofluids are considered as most promising candidates in solar energy, heat exchangers, electronics cooling, automotive cooling, nuclear reactors, automobile, aerospace, biomedical devices, food processing etc. In this work, a ternary hybrid nanofluid flow that contains metallic nanoparticles over a wedge under the prevalence of solar radiating heat, induced magnetic field and the shape factor of nanoparticles is considered. A ternary hybrid nanofluid is synthesized by dispersing iron oxide (Fe3O4), silver (Ag) and magnesium oxide (MgO) nanoparticles in a water (H2O) base fluid. By employing similarity transformations, we can convert the governing equations into ordinary differential equations and then solve numerically by using the Runge–Kutta–Fehlberg approach.

Findings

There is no fund for the research work.

Social implications

This kind of study may be used to improve the performance of solar collectors, solar energy and solar cells.

Originality/value

This investigation unfolds the hydrothermal changes of radiative water-based Fe3O4-Ag-MgO-H2O ternary hybrid nanofluidic transport past a static and moving wedge in the presence of solar radiating heating and induced magnetic fields. The shape factor of nanoparticles has been considered in this study.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 November 2013

Shiv Lal, S.C. Kaushik and P.K. Bhargava

The ventilation and air-conditioning systems consume the highest energy in the building sector. The proper ventilation in residential buildings through the passive solar systems…

Abstract

Purpose

The ventilation and air-conditioning systems consume the highest energy in the building sector. The proper ventilation in residential buildings through the passive solar systems can substantially reduce the energy consumption in building sector. The paper aims to identify the application of wind shaft as a solar chimney, a passive ventilation system and evaluated the performance of the system.

Design/methodology/approach

The paper investigated the performance of the solar chimney with size, absorber area 9.76 m2 and height 4.57 m, based on experimental data recorded in the city, Kota (25°10N, 75°52E), India. Solar data were recorded using the state of the art weather station situated very closer to the residence. The air velocity and temperatures in the chimney and in the building are recorded in data logger. A simple mathematical model was used for the evaluation of the air change per hour (ACH) in the residential building.

Findings

From the analysis of weather data, it was found that the ambient temperature varies linearly with the solar irradiance. Air change rate of 5.7-7.7 can be achieved from this solar chimney, in peak summer season which is appropriate and meets the ventilation requirement as per BIS (Handbook of Functional Requirements of Buildings – 1987).

Originality/value

The air temperature increases from bottom to top in the solar chimney. The solar irradiance dictates the chimney air temperature, and both are in step with each other. It shows that the solar chimney is working in tune with the solar radiation availability. In peak summer, it provides sufficient ACH to the tune of 3-6. Resulting wind shaft can act effectively as a solar chimney. It is a feasible solution for the ventilation needs and it improves the looks of any residential building.

Details

International Journal of Energy Sector Management, vol. 7 no. 4
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 1 March 2017

Jian Yao and Rong-Yue Zheng

This paper conducted a study on the energy-saving potential of a developed thermotropic window. Office buildings in different climate regions of China were compared in terms of…

Abstract

This paper conducted a study on the energy-saving potential of a developed thermotropic window. Office buildings in different climate regions of China were compared in terms of heating, cooling and lighting energy demands. Results show that annual heating and cooling energy demands for office buildings differ largely, while lighting energy demand at different climates keeps a significant percentage of the total energy demand, ranging from 36.1% to 66.3%. Meanwhile, thermotropic windows achieve a great advantage in improving daylighting performance and in reducing the overall energy demand, by reducing the overall energy demand by 2.27%-8.7% and 10.1%-21.72%, respectively, compared to movable shading devices and Low-E windows. This means that this kind of thermotropic windows have a great potential in applications in different climatic regions and can be considered as a good substitute of solar shading devices and Low-E windows.

Details

Open House International, vol. 42 no. 1
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 19 August 2021

B. Norerama D. Pagukuman and M. Kamel Wan Ibrahim

The purpose of this paper is to present and discuss the external factors of the solar dryer design that influenced the thermal efficiency of the solar dryer that contribute to the…

Abstract

Purpose

The purpose of this paper is to present and discuss the external factors of the solar dryer design that influenced the thermal efficiency of the solar dryer that contribute to the better quality of dried food products.

Design/methodology/approach

From the reviewed works of literature, the external factors including the drying temperature, airflow rate and relative humidity have significant effects to increase the rate of moisture diffusivity of the freshly harvested products during the drying process. The proper controls of airflow rate (Q), velocity (V), relative humidity (RH%) and drying temperature (°C) can influence the dried product quality. The dehydration ratio is the procedure to measure the quality of the dried food product.

Findings

The indirect solar dryer including the mixed-mode, hybrid and integrated was found shorter in drying time and energy-intensive compared to sun drying and direct drying. The recommended drying temperature is from 35.5°C to 70°C with 1–2 m/s velocity and 20%–60% relative humidity. The optimum thermal efficiency can be reached by additional devices, including solar collectors and solar accumulators. It gives a simultaneous effect and elongated the drying temperature 8%–10% higher than ambient temperature with 34%–40% energy saving. The recommended airflow rate for drying is 0.1204 to 0.0894 kg/s. Meanwhile, an airflow rate at 0.035–0.04 kg/m2 is recommended for an optimum drying kinetic performance.

Research limitations/implications

This paper discusses the influence of the external factors of the solar dryer design on the thermal performance of the solar dryer and final dried food products quality. Therefore, the findings cannot serve as a statistical generalization but should instead be viewed as the quantitative validation subjected to fundamentals of the solar dryer design process and qualitative observation of the dried food product quality.

Practical implications

A well-designed of solar dryer with low operating and initial fabrication cost, which is simple to operate is useful for the farmers to preserve surplus harvested crops to an acceptable and marketable foods product. The optimization of the external and internal factors can contribute to solar dryer thermal performance that later provides an organoleptic drying condition that results in good quality of dried product and better drying process. The recommended drying temperature for a drying method is between 35°C up to 70°C. Drying at 65.56°C was effective to kill microorganisms. Meanwhile, drying at 50°C consider as average drying temperature. The recommended airflow rate for drying is 0.1204 to 0.0894 kg/s. Meanwhile, air flowrate at 0.035–0.04 kg/m2 is recommended for optimum drying kinetic performance. The recommended value of aspect ratio and mass flow rate is 200 to 300 for an optimum evaporation rate. The good quality of dried products and good performance of solar dryers can be developed by proper control of airflow rate (Q), velocity (V), relative humidity (RH%) and drying temperature (°C).

Social implications

The proper control of the drying temperature, relative humidity and airflow rate during the drying process will influence the final dried food products in terms of shape, color, aroma, texture, rupture and nutritious value. It is crucial to control the drying parameters because over-drying caused an increment of energy cost and reduces the dry matter. The quick-drying will disturb the chemical process during fermentation to be completed.

Originality/value

This study identifies the potential of the solar drying method for dehydrating agricultural produces for later use with the organoleptic drying process. The organoleptic drying process can reduce mold growth by promising an effective diffusion of moisture from freshly harvested products. The research paper gives useful understandings that well-designed solar drying technology gives a significant effect on dried product quality.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 30 December 2022

Subbarama Kousik Suraparaju, Arjun Singh K., Vijesh Jayan and Sendhil Kumar Natarajan

The utilisation of renewable energy sources for generating electricity and potable water is one of the most sustainable approaches in the current scenario. Therefore, the current…

Abstract

Purpose

The utilisation of renewable energy sources for generating electricity and potable water is one of the most sustainable approaches in the current scenario. Therefore, the current research aims to design and develop a novel co-generation system to address the electricity and potable water needs of rural areas.

Design/methodology/approach

The cogeneration system mainly consists of a solar parabolic dish concentrator (SPDC) system with a concentrated photo-voltaic module at the receiver for electricity generation. It is further integrated with a low-temperature thermal desalination (LTTD) system for generating potable water. Also, a novel corn cob filtration system is introduced for the pre-treatment to reduce the salt content in seawater before circulating it into the receiver of the SPDC system. The designed novel co-generation system has been numerically and experimentally tested to analyse the performance at Karaikal, U.T. of Puducherry, India.

Findings

Because of the pre-treatment with a corn cob, the scale formation in the pipes of the SPDC system is significantly reduced, which enhances the efficiency of the system. It is observed that the conductivity, pH and TDS of seawater are reduced significantly after the pre-treatment by the corncob filtration system. Also, the integrated system is capable of generating 6–8 litres of potable water per day.

Originality/value

The integration of the corncob filtration system reduced the scaling formation compared to the general circulation of water in the hoses. Also, the integrated SPDC and LTTD systems are comparatively economical to generate higher yields of clean water than solar stills.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 October 2018

Bifa Chen, Meiyan Zhang and Guo-an Tang

The rest-to-rest movements for a spacecraft, such as attitude adjustment and orbital manoeuver, are likely to excite residual vibration of flexible appendages, which may affect…

Abstract

Purpose

The rest-to-rest movements for a spacecraft, such as attitude adjustment and orbital manoeuver, are likely to excite residual vibration of flexible appendages, which may affect the attitude accuracy and even result in severe structural damage. The purpose of this paper is to present an approach to attenuating the vibration of flexible solar array by using reaction flywheel.

Design/methodology/approach

The reaction flywheel installed on solar array served as an actuator to provide reaction torque to a structure according to a designed feedback control law. This torque can be considered as an artificial damping. Experiment on a scale model of the solar array is first performed to verify the effectiveness of this method. Numerical simulation on finite element model of a full-scale solar array is subsequently carried out to confirm the validity of this method for practical engineering application.

Findings

The vibration suppression effect on the structure using a reaction flywheel is deduced by theoretical analysis. Results from both experiment and numerical simulation reveal that the efficiency of vibration attenuation is promoted.

Research limitations/implications

Improvements on control law are left for further study. Additionally, only the first-order bending vibration of the flexible solar array is attenuated, and further study is required for other types of vibration suppression.

Practical implications

An effective method is proposed for spacecraft designers to actively suppress the vibration of the flexible solar array.

Originality/value

A novel active vibration reduction scheme is proposed using a reaction flywheel to suppress vibration of the flexible solar array. This paper fulfils a source of theoretical analysis and experimental studies for vibration reduction measure design and provides practical help for the spacecraft designers.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 September 2019

Farah Khaleda Mohd Zaini, Vengadaesvaran Balakrishnan, A. Syafiq, Nasrudin Abd. Rahim, A.K. Pandey, Ramesh Kasi and Ramesh Subramaniam

The purpose of this paper is to implement coating system by varying the amount of nano-sized titanium dioxide, (nano-TiO2) combined with various organic binders and to study the…

Abstract

Purpose

The purpose of this paper is to implement coating system by varying the amount of nano-sized titanium dioxide, (nano-TiO2) combined with various organic binders and to study the coating effects on the performance of solar cell in terms of temperature and efficiency.

Design/methodology/approach

Nano-TiO2 coatings are developed in two types of binder networks; the combination of methyltrimethoxy silane (MTMS) and nitric acid and the combination of 3-aminopropyl triethoxysilane (APTES) and MTMS. Overall, the formulations method was cost-effective, produces good transparency, clear and managed to dry at room temperature. The coating mixtures were applied onto the glass substrate by using the dip-coating method and the coated substrate were sent for several characterizations.

Findings

This study demonstrated that TiO2 nanoparticle coating in APTES/MTMS matrix showed a thermal-decreasing result on solar cells, where the cell temperature is reduced to 46.81°C (T2 coating type) from 55.74°C (without coating) after 1-h exposure under 1,000 W/m2 irradiance in a solar simulator. Contrary to prior works where solar cell coatings were reported to reduce the cell temperature at the expense of the cell efficiency, the results from this study reported an improved fill factor (FF) of solar cells. From the photovoltaic (PV) characteristics study, the FF for solar cells is increased by approximately 0.2, i.e. 33.3 per cent, for all coatings compared to the non-coated cell.

Research limitations/implications

Findings will be able to contribute in the development of temperature-reducing and efficiency-enhancing coating for PV panels.

Practical implications

A simple dip-coating method provides an even distribution of TiO2 nanoparticle coating on the glass panel, which is cost-effective and time-efficient to reduce the temperature of solar cell while maintaining its efficiency.

Originality/value

The ability of nano-TiO2 coatings with a simple fabrication method and the right solution to reduce the surface temperature of solar cells while improving the FF of the cells.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

11 – 20 of over 2000