Search results

1 – 10 of 20
To view the access options for this content please click here
Article
Publication date: 14 November 2016

Bahjat Fatima, Huma Ramzan and Sohail Asghar

The purpose of this paper is to critically analyze the state-of-the-art session identification techniques used in web usage mining (WUM) process in terms of their…

Abstract

Purpose

The purpose of this paper is to critically analyze the state-of-the-art session identification techniques used in web usage mining (WUM) process in terms of their limitations, features, and methodologies.

Design/methodology/approach

In this research, systematic literature review has been conducted using review protocol approach. The methodology consisted of a comprehensive search for relevant literature over the period of 2005-2015, using four online database repositories (i.e. IEEE, Springer, ACM Digital Library, and ScienceDirect).

Findings

The findings revealed that this research area is still immature and existing literature lacks the critical review of recent session identification techniques used in WUM process.

Originality/value

The contribution of this study is to provide a structured overview of the research developments, to critically review the existing session identification techniques, highlight their limitations and associated challenges and identify areas where further improvements are required so as to complement the performance of existing techniques.

Details

Online Information Review, vol. 40 no. 7
Type: Research Article
ISSN: 1468-4527

Keywords

To view the access options for this content please click here
Article
Publication date: 4 September 2017

Sana Azeem, Malik Asghar Naeem, Abdul Waheed and Muhammad Jamaluddin Thaheem

The purpose of this paper is to investigate the barriers inhibiting the adoption of green building and measures to promote this approach in Pakistan.

Abstract

Purpose

The purpose of this paper is to investigate the barriers inhibiting the adoption of green building and measures to promote this approach in Pakistan.

Design/methodology/approach

Barriers and measures were identified and examined by using a combination of research methods, including literature review, questionnaire survey, and in-depth interviews with the construction industry-related practitioners working in Pakistan. Ranking technique and factor analysis were used to identify the significant issues associated with the adoption of green building practices.

Findings

As per the survey results, the most critical barrier is “lack of awareness among people about the importance and advantages of adopting green building practices,” followed by “lack of incentives from government” and “lack of green building codes and regulations,” respectively. The results also indicate that most important measure to promote the adoption of green buildings is “creation of public awareness toward green initiatives through seminars, workshops, and discussions,” followed by “availability of green building codes and regulations (mandatory to apply)” and “financial incentives and penalties by the government (e.g. soft loan, tax) for promoting green building practices,” respectively.

Research limitations/implications

Research limitation is that its findings, other than Pakistan, cannot be generalized to other developing countries.

Practical implications

Findings of the research will be helpful in sensitizing the regulatory agencies, the policy makers, and the building construction practitioners about the barriers to adoption of green building practices. The suggested measures will help in devising policies and economic measures to promote the construction of green and environment-friendly buildings.

Social implications

This research will help the common people to know about the importance of green buildings that may lead to a deviation from the practice of traditional buildings to a widespread trend of building green buildings. This will lead to drastic reduction in demand for energy and considerable monetary savings for the common people.

Originality/value

The findings of this study are expected to contribute valuable information to decision makers for the better understanding of key issues that call for more attention in the promotion of efforts of green building practices in Pakistan. The results are based on the perception of local stakeholders, but might also be helpful for policy makers in other countries.

Details

Smart and Sustainable Built Environment, vol. 6 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

To view the access options for this content please click here
Article
Publication date: 28 November 2019

Muhammad Sohail and Sana Tariq

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional…

Abstract

Purpose

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.

Design/methodology/approach

Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.

Findings

Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.

Originality/value

The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 10 December 2019

Muhammad Ijaz Khan, Sohail Ahmad Khan, Tasawar Hayat, Muhammad Waqas and Ahmed Alsaedi

The purpose of this paper is to investigate the entropy optimization in magnetohydrodynamic hybrid nanomaterials flows toward a stretchable surface. The energy expression…

Abstract

Purpose

The purpose of this paper is to investigate the entropy optimization in magnetohydrodynamic hybrid nanomaterials flows toward a stretchable surface. The energy expression is modeled subject to dissipation, heat generation/absorption and Joule heating. Here silicon dioxide (SiO2) and molybdenum disulfide (MoS2) as nanoparticles and propylene glycol (C3H8O2) as base fluid, respectively. Furthermore, the authors discussed the comparative study of molybdenum disulfide and silicon dioxide diluted in propylene glycol. The total entropy optimization rate is computed through implementation of the second law of thermodynamics.

Design/methodology/approach

The nonlinear partial differential system is reduced to an ordinary one through implementation of transformation. Newton built-in shooting method is used for computational results for the given system. Influences of various flow variables on the temperature, Bejan number, velocity, concentration and entropy generation rate are examined graphically for both nanoparticles (SiO2 and MoS2). Gradients of velocity and temperature are computed numerically for various physical parameters. Also, take the comparison between the present and previously published results in tabulated form.

Findings

For higher estimation of ϕ both temperature and velocity are enhanced. Entropy optimization and Bejan number have the opposite outcome for viscosity parameter. Temperature and velocity have opposite behaviors for larger values of magnetic parameter. Molybdenum disulfide (MoS2) is more efficient than silicon dioxide (SiO2).

Originality/value

No such work is yet published in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 11 February 2021

Mohammad Sohail Haider and Chen Ya

Information literacy skills (ILSs) and information-seeking behavior (ISB) is a widespread topic that needs modern technologies to improve the technical skills of the…

Abstract

Purpose

Information literacy skills (ILSs) and information-seeking behavior (ISB) is a widespread topic that needs modern technologies to improve the technical skills of the students. The purpose of this study is to assess the usage of library resources for medical college students. To explore and understand the student’s level of satisfaction, learning and seeking behavior by efficient information retrieval systems.

Design/methodology/approach

The study is based on a quantitative research method and data was collected from the undergraduate students of medical colleges Islamabad Pakistan. The data were analyzed by Statistical Package for Social Science (SPSS) version 25 using Pearson correlation statistical test to identify the level of proficiency of correlation of variables and testing of the proposed hypothesis.

Findings

The finding of the study shows that the medical students can enhance their IT skills to seek the information in this technology era. The medical institutional administration can develop the education development policy, traditional health education policy, funds allocating policy, health information literacy and collaborate with library staff for enhancing the services and to meet the information need of medical students.

Practical implications

The conclusion of this study is very helpful to reduce the barriers between the students and the library staff. The findings of the study are also beneficial for the administration to improve and develop the strategies for enhancing the ILSs of medical students to achieve medical educational information in the age of technology. Therefore, all significant structures want to improve and to develop the environment of information seeking by medical students to achieve medical educational information.

Social implications

Medical college library administrative management must be design useful a durable policy to come up with the technology development for digital literacy. The study reduces the barriers between the students and the library staff.

Originality/value

The study is based on quantitative research method to find out ISB of medical students.

Details

Information Discovery and Delivery, vol. 49 no. 1
Type: Research Article
ISSN: 2398-6247

Keywords

To view the access options for this content please click here
Article
Publication date: 26 September 2019

Muhammad Sohail, Rahila Naz and Rabeeah Raza

The purpose of this paper is to address the entropy analysis of the 3D flow of Maxwell nanofluid containing gyrotactic microorganism in the presence of…

Abstract

Purpose

The purpose of this paper is to address the entropy analysis of the 3D flow of Maxwell nanofluid containing gyrotactic microorganism in the presence of homogeneous–heterogeneous reactions with improved heat conduction and mass diffusion models over a stretched surface. Improved models are supported out by utilizing Cattaneo–Christov heat flux and generalized Fick’s law, respectively.

Design/methodology/approach

Governing equations which present the given flow phenomenon are modeled in the form of PDEs by applying boundary layer analysis and then suitable makeovers are engaged to transfigure prevailing partial differential equations into a set of ordinary differential equations. Transformed equations are handled via optimal homotopy analysis process in computational tool Mathematica and also a special case of already published work is substantiated and found to be in excellent settlement.

Findings

The bearing of innumerable convoluted physical parameters on velocity, temperature, concentration, reaction rate, the concentration of motile microorganism and entropy generation are presented and deliberated through graphs. Moreover, the convergence of the homotopic solution is presented in tabular form which confirms the reliability of the proposed scheme. It is perceived that mounting values of the magnetic parameter and Brinkman number boosts the irreversibility analysis and Bejan number diminishes for these parameters. Moreover, the growing values of Prandtl and Schmidt numbers reduce the temperature and concentration fields, respectively.

Practical implications

The work contained in this paper has applications in a different industry.

Originality/value

The work contained in this paper is original work and it is good for the researcher in the field of applied mathematics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 8 September 2021

S. Das, A.S. Banu and R.N. Jana

In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are…

Abstract

Purpose

In various kinds of materials processes, heat and mass transfer control in nuclear phenomena, constructing buildings, turbines and electronic circuits, etc., there are numerous problems that cannot be enlightened by uniform wall temperature. To explore such physical phenomena researchers incorporate non-uniform or ramped temperature conditions at the boundary, the purpose of this paper is to achieve the closed-form solution of a time-dependent magnetohydrodynamic (MHD) boundary layer flow with heat and mass transfer of an electrically conducting non-Newtonian Casson fluid toward an infinite vertical plate subject to the ramped temperature and concentration (RTC). The consequences of chemical reaction in the mass equation and thermal radiation in the energy equation are encompassed in this analysis. The flow regime manifests with pertinent physical impacts of the magnetic field, thermal radiation, chemical reaction and heat generation/absorption. A first-order chemical reaction that is proportional to the concentration itself directly is assumed. The Rosseland approximation is adopted to describe the radiative heat flux in the energy equation.

Design/methodology/approach

The problem is formulated in terms of partial differential equations with the appropriate physical initial and boundary conditions. To make the governing equations dimensionless, some suitable non-dimensional variables are introduced. The resulting non-dimensional equations are solved analytically by applying the Laplace transform method. The mathematical expressions for skin friction, Nusselt number and Sherwood number are calculated and expressed in closed form. Impacts of various associated physical parameters on the pertinent flow quantities, namely, velocity, temperature and concentration profiles, skin friction, Nusselt number and Sherwood number, are demonstrated and analyzed via graphs and tables.

Findings

Graphical analysis reveals that the boundary layer flow and heat and mass transfer attributes are significantly varied for the embedded physical parameters in the case of constant temperature and concentration (CTC) as compared to RTC. It is worthy to note that the fluid velocity is high with CTC and lower for RTC. Also, the fluid velocity declines with the augmentation of the magnetic parameter. Moreover, growth in thermal radiation leads to a declination in the temperature profile.

Practical implications

The proposed model has relevance in numerous engineering and technical procedures including industries related to polymers, area of chemical productions, nuclear energy, electronics and aerodynamics. Encouraged by such applications, the present work is undertaken.

Originality/value

Literature review unveils that sundry studies have been carried out in the presence of uniform wall temperature. Few studies have been conducted by considering non-uniform or ramped wall temperature and concentration. The authors are focused on an analytical investigation of an unsteady MHD boundary layer flow with heat and mass transfer of non-Newtonian Casson fluid past a moving plate subject to the RTC at the plate. Based on the authors’ knowledge, the present study has, so far, not appeared in scientific communications. Obtained analytical solutions are verified by considering particular cases of the published works.

Details

World Journal of Engineering, vol. 18 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article
Publication date: 22 June 2020

Naveed Imran, Maryiam Javed, Muhammad Sohail, S. Farooq and Mubashir Qayyum

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on…

Abstract

Purpose

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage of non-Newtonian fluid rheological properties enhancing, damping tools, protection apparatus individuals and in various distinct mechanical procedures. Industrial applications of non-Newtonian liquids include minimum friction, reduction in oil-pipeline friction, scale-up, flow tracers and in several others. The peristaltic mechanism is used as a non-Newtonian material carrier here. This mechanism occurs because of continuous symmetrical and asymmetrical propulsion of smooth channel walls. Peristalsis is a very significant mechanism for carrying drugs and other materials during sensitive diseases treatments.

Design/methodology/approach

Keeping in mind the considered problem assumptions (Rabinowitsch fluid model, thermal Grashof number, Prandtl number, density Grashof number, wall properties, etc.), it is found that the modeled equations are coupled and nonlinear. Thus here, analytical results are quite challenging to acquire and very limited to extremely venerated circumstances unsettled to their nonlinearity. Hence various developments found in computing proficiencies, numerical procedures that provides accurate, stable and satisfying solutions for non-Newtonian material flows exclusively in complex dimensions play a significant role. Here BVP4C numerical technique is developed to evaluate the nonlinear coupled system of equations with appropriate boundary constraints.

Findings

Due to convectively heated surface fluid between the walls having a small temperature. Sherwood and Nusselt numbers both deduce for fixed radiation values and different Rabinowitsch fluid quantity. Skin friction is maximum in the case of Newtonian, while minimum in case of dilatant model and pseudoplastic models. The influence of numerous parameters associated with flow problems such as thermal Grashof number, density Grashof number, Hartman number, Brownian motion, thermophoresis motion factor and slip parameters are also explored in detail and plotted for concentration profile, temperature distribution and velocity. From this analysis, it is concluded that velocity escalates for larger

Originality/value

The work reported in this manuscript has not been investigated so far by any researcher.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article
Publication date: 6 January 2021

Naeem Ullah, Sohail Nadeem, Luthais McCash, Anber Saleem and Alibek Issakhov

This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower…

Abstract

Purpose

This paper aims to focus on the natural convective flow analysis of micropolar nanofluid fluid in a rectangular vertical container. A heated source is placed in the lower wall to generate the internal flow. In further assumptions, the left/right wall are kept cool, while the upper and lower remaining portions are insulated. Free convection prevails in the regime because of thermal difference in-between the lower warmer and upper colder region.

Design/methodology/approach

The physical setup owns mathematical framework in-terms of non-linear partial differential equations. For the solution purpose of the differential system, finite volume method is adopted. The interesting features of the flow along with thermal transportation involve both translational and rotational movement of fluid particles.

Findings

Performing the simulations towards flow controlling variables the outputs are put together in contour maps and line graphs. It is indicated that the variations in flow profile mass concentration and temperature field augments at higher Rayleigh parameter because of stronger buoyancy effects. Higher viscosity coefficient implies decrease in flow and thermal transportation. Further, the average heat transfer rate also grows by increasing both the Rayleigh parameter and heated source length.

Originality/value

To the best of the authors’ knowledge, no such study has been addressed yet. Further, the results are validated by comparing with previously published work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2019

Rafiq Asghar, Faisal Rehman, Ali Aman, Kashif Iqbal and Agha Ali Nawaz

The purpose of this paper is to investigate and minimize the printing-related defects in the surface mount assembly (SMA) process.

Abstract

Purpose

The purpose of this paper is to investigate and minimize the printing-related defects in the surface mount assembly (SMA) process.

Design/methodology/approach

This paper uses an experimental approach to explore process parameter and printing defects during the SMA process. Increasing printing performance, various practices of solder paste (Ag3.0/Cu0.5/Sn) storage and handling are suggested. Lopsided paste problem is studied by varying squeegee pressure and the results are presented. Unfilled pads problems are observed for ball grid array (BGA) and quad flat package (QFP) which is mitigated by proper force tuning. In this paper, a comparative study is conducted which evaluates the manifestation of printing offset due to low-grade stencil. The input/output (I/O) boards were oxidized when the relative humidity was maintained beyond 70 per cent for more than 8 h. This pad oxidation problem is overcome by proper printed circuit board (PCB) handling procedures. When the unoptimized line is used, the paste wedged in the stencil and influences the performance of the screen printer, for this reason, an optimized line is proposed that minimize the printing defects.

Findings

The key findings are as follows: in the SMA process, printing quality is directly associated with solder paste quality. Experimentally, it is observed that a considerable variance in solder deposition occurred when the front and rear squeegee have different configurations. High-grade and unsoiled stencil results in superior paste deposition and less distinction. Insufficient solder paste and bridge problems also occur in printing when PCB pads are oxidized. Optimized line resolves solder paste clog issues, associated with stencil’s aperture. The cooling arrangement on the conveyor, after reflow, explicates hot jig problem. Control environmental conditions minimized static charges and printing defects.

Originality/value

The preceding studies emphasis mostly on the squeegee pressure, while other important parameters are not completely investigated. Moreover, it is very imperative to concurrently measure all parameters while varying the environmental conditions. This study highlights and provides an experimental approach to various PCB printing defects, and a comparative study has been conducted that concurrently measure all process parameters.

Details

Soldering & Surface Mount Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 20