Search results

1 – 10 of over 1000
Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 September 2007

Hamid Roham, Siamak Najarian, Seyed Mohsen Hosseini and Javad Dargahi

The paper aims to discuss the design, fabrication, communication, testing, and simulation of a new tactile probe called Elastirob used to measure the modulus of elasticity of…

Abstract

Purpose

The paper aims to discuss the design, fabrication, communication, testing, and simulation of a new tactile probe called Elastirob used to measure the modulus of elasticity of biological soft tissues and soft materials.

Design/methodology/approach

Both finite element modeling and experimental approaches were used in this analysis. Elastirob, with the ability to apply different rates of strain on testing specimens, is accompanied by a tactile display called TacPlay. This display is a custom‐designed user‐friendly interface and is able to evaluate the elasticity in each part of the stress‐strain curve.

Findings

A new device is being constructed that can measure the modulus of elasticity of a sensed object. The results of Elastirob applied on two specimens are reported and compared by the results of experiments obtained by an industrial testing machine. Acceptable validations of Elastirob were achieved from the comparisons.

Research limitations/implications

The designed system can be miniaturized to be used in minimally invasive surgeries in the future.

Practical implications

Elastirob determines the elasticity by drawing the stress‐strain curve and then calculating its slope. The combination of the force sensing resistor, microcontroller and stepper motor provides Elastirob with the ability to apply different rates of strain on testing specimens.

Originality/value

It can be employed in both in vivo and in vitro tests for measuring stiffness of touch objects. For the first time, a device has been designed and tested which is a few orders of magnitude smaller than its industrial counterparts and has considerably lower weight.

Details

Sensor Review, vol. 27 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 December 2004

Gregory Tholey, Anand Pillarisetti and Jaydev P. Desai

Advancements in robotics have led to significant improvements in robot‐assisted minimally invasive surgery. This paper describes our design of an automated laparoscopic grasper…

1135

Abstract

Advancements in robotics have led to significant improvements in robot‐assisted minimally invasive surgery. This paper describes our design of an automated laparoscopic grasper with tri‐directional force measurement capability at the grasping jaws. The laparoscopic tool can measure normal, lateral, and longitudinal grasping forces while grasping soft tissue. Additionally, the tool can also be used to measure the tissue probing forces. Initial testing of the prototype has shown its ability to accurately characterize artificial tissue samples of varying stiffness and accurately measure the probing forces.

Details

Industrial Robot: An International Journal, vol. 31 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 March 2019

Amro Hassaan, Aaron Trinidade, Bhik Kotecha and Neil Tolley

Trans-oral robotic surgery (TORS) is increasingly employed in obstructive sleep apnoea (OSA) management. Objective outcomes are generally assessed through polysomnography…

Abstract

Purpose

Trans-oral robotic surgery (TORS) is increasingly employed in obstructive sleep apnoea (OSA) management. Objective outcomes are generally assessed through polysomnography. Pre-operative magnetic resonance imaging (MRI) can be a useful adjunct in objective upper airway assessment, in particular the tongue base, providing useful information for surgical planning and outcome assessment, though care must be taken in patient positioning during surgery. The purpose of this paper is to identify pitfalls in this process and suggest a protocol for pre-operative MRI scanning in OSA.

Design/methodology/approach

This study is a four-patient prospective case-series and literature review. Outcome measures include pre- and post-operative volumetric changes in the pharynx as measured on MRI and apnoea–hypopnea indices (AHI), with cure being OSA resolution or a 50 per cent reduction in AHI.

Findings

All patients achieved AHI reduction and/or OSA cure following TORS, despite a decrease in pharyngeal volume measurements at the tongue base level. This study and others lacked standardisation in the MRI scanning protocol, which resulted in an inability to effectively compare pre- and post-operative scans. Pitfalls were related to variation in head/tongue position, soft-tissue marker usage and assessed area boundary limits.

Practical implications

TORS appears to be effective in OSA management. A new protocol for patient positioning and anatomical landmarks is suggested.

Originality/value

The findings could provide directly comparable data between scans and may allow correlation between tongue base volumetric changes and AHI through subsequent and historical study meta-analysis.

Article
Publication date: 9 April 2020

Jinhee Park and Yun Ja Nam

Fracture experiments on real human bodies to examine the protected positions and protective devices for the development of protective clothing to manage fractures is exceedingly…

239

Abstract

Purpose

Fracture experiments on real human bodies to examine the protected positions and protective devices for the development of protective clothing to manage fractures is exceedingly difficult. Thus, the experimental design will have limitations, more of which are imposed if subjects are elderly people. To circumvent these limitations, this study proposes a finite element model of the hip joint in elderly women with virtual impact simulations that can replace actual fall and impact tests, and examine the positions and characteristics of fractures resulting from taking a fall.

Design/methodology/approach

The hip joints were modeled after the average horizontal surface size and cross-sectional shapes of the lower extremities (waist to knee) in 439 elderly Korean women in that age group. The model was composed of bones, cartilages, and soft tissue.

Findings

The fracture was examined by comparing the maximum stress on the hip joint by applying a point force to its adjacent surface. The vulnerable part in the hip joint neck with a high risk of fracture risk on an impact could be determined and used to set the protective device attachment position.

Originality/value

It is significant that this study has developed a partial model of the human body that can be used for a relatively simple simulation by minimizing the highly complex human body as much as possible. Furthermore, the model is easily applicable to the designing of protected positions and protective devices for the development of special clothing, for hip joint fracture prevention.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 February 2024

Xiaoqing Zhang, Genliang Xiong, Peng Yin, Yanfeng Gao and Yan Feng

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous…

Abstract

Purpose

To ensure the motion attitude and stable contact force of massage robot working on unknown human tissue environment, this study aims to propose a robotic system for autonomous massage path planning and stable interaction control.

Design/methodology/approach

First, back region extraction and acupoint recognition based on deep learning is proposed, which provides a basis for determining the working area and path points of the robot. Second, to realize the standard approach and movement trajectory of the expert massage, 3D reconstruction and path planning of the massage area are performed, and normal vectors are calculated to control the normal orientation of robot-end. Finally, to cope with the soft and hard changes of human tissue state and body movement, an adaptive force tracking control strategy is presented to compensate the uncertainty of environmental position and tissue hardness online.

Findings

Improved network model can accomplish the acupoint recognition task with a large accuracy and integrate the point cloud to generate massage trajectories adapted to the shape of the human body. Experimental results show that the adaptive force tracking control can obtain a relatively smooth force, and the error is basically within ± 0.2 N during the online experiment.

Originality/value

This paper incorporates deep learning, 3D reconstruction and impedance control, the robot can understand the shape features of the massage area and adapt its planning massage path to carry out a stable and safe force tracking control during dynamic robot–human contact.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3806

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 January 2014

Yunfeng Liu, Wenqing Liao, Guangsheng Jin, Quanming Yang and Wei Peng

– The purpose is to realize precise apicoectomy with less surgical risk and improved quality and efficiency.

Abstract

Purpose

The purpose is to realize precise apicoectomy with less surgical risk and improved quality and efficiency.

Design/methodology/approach

First, the procedure of precise apicoectomy based on additive manufacturing (AM) and digital design is proposed. With CT images of the patient's oral, a 3D model of alveolar bone and teeth is reconstructed, and based on this model, the infected tissue and enclosed root tip can be determined. Thus, a surgical plan can be created based on clear anatomical relationships and minimal negative constraints, which will then determine the drill position, direction and depth, as well as the resection length of root tip. With this plan, a surgical guide design is performed via a composite model from reversed plaster models and hard tissue models from CT, and accessory tools including drill with stop plane and handle are also selected. With the surgical guide, the virtual plan in the computer can be realized in the clinic.

Findings

With this methodology, the dentist can perform root-end resection with greater accuracy, save more than 30 percent of operatory time, and the discomfort to the patient is reduced to a minimum.

Practical implications

The proposed methodology has been used in ten cases for root-end resections. In fact, this method of designing a computer-based treatment plan with a 3D model of a patient and applying it in the clinic through guiding tools can be used in other surgeries, such as orthognathic surgery or osteotomy.

Originality/value

This case report illustrates that with AM and digital design methods, optimal operational plans can be designed and realized for apicoectomy, and the quality and efficiency of clinical surgery are greatly improved compared with conventional methods.

Details

Rapid Prototyping Journal, vol. 20 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 September 2008

Wen Zeng, Feng Lin, Tingchun Shi, Renji Zhang, Yongyan Nian, Jie Ruan and Tianrui Zhou

In plastic reconstruction surgeries, total auricular reconstruction for microtia is a real challenge. Presently, autogenous costal cartilage and MEDPOR are the chosen materials…

1212

Abstract

Purpose

In plastic reconstruction surgeries, total auricular reconstruction for microtia is a real challenge. Presently, autogenous costal cartilage and MEDPOR are the chosen materials but none can satisfy the requirements of orthopaedic operation. The purpose of this paper is to examine how to fabricate an ear scaffold with a good shape.

Design/methodology/approach

A new approach to form the auricle framework is described. CT scan data of the patient's contralateral “good ear” are used to generate a 3D reconstruction model of the new ear. This model is then imported into rapid prototyping (RP) software to slice. The sliced data drive the fused deposition modeling (FDM) machine to build the ear framework layer by layer. Based on the actual shape of the computer model, FDM technology produces a real feel ear framework to match the size of the opposite good ear.

Findings

An artificial human ear was built using FDM technology based on CT images. The auricular framework with polyurethane was a porous structure with good flexibility and biocompatibility. After implanting into the mouse, a real life human ear appeared on the back of the mouse. The experiment indicated that this method provided an efficient way to macrotia reconstruction.

Originality/value

The freeform fabrication technique combined with CT image reconstruction could provide an efficient way to produce a porous structure and solve the framework carving problem in microtia reconstruction.

Details

Rapid Prototyping Journal, vol. 14 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 April 2014

Sushant Negi, Suresh Dhiman and Rajesh Kumar Sharma

This study aims to provide an overview of rapid prototyping (RP) and shows the potential of this technology in the field of medicine as reported in various journals and…

1824

Abstract

Purpose

This study aims to provide an overview of rapid prototyping (RP) and shows the potential of this technology in the field of medicine as reported in various journals and proceedings. This review article also reports three case studies from open literature where RP and associated technology have been successfully implemented in the medical field.

Design/methodology/approach

Key publications from the past two decades have been reviewed.

Findings

This study concludes that use of RP-built medical model facilitates the three-dimensional visualization of anatomical part, improves the quality of preoperative planning and assists in the selection of optimal surgical approach and prosthetic implants. Additionally, this technology makes the previously manual operations much faster, accurate and cheaper. The outcome based on literature review and three case studies strongly suggests that RP technology might become part of a standard protocol in the medical sector in the near future.

Originality/value

The article is beneficial to study the influence of RP and associated technology in the field of medicine.

Details

Rapid Prototyping Journal, vol. 20 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000