Search results

1 – 10 of 130
Article
Publication date: 1 March 2023

Mohamed Amine Hebri, Abderrahmane Rebhaoui, Gregory Bauw, Jean-Philippe Lecointe, Stéphane Duchesne, Gianluca Zito, Abdelli Abdenour, Victor Mediavilla Santos, Vincent Mallard and Adrien Maier

The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency…

Abstract

Purpose

The purpose of this paper is to exploit the optimal performances of each magnetic material in terms of low iron losses and high saturation flux density to improve the efficiency and the power density of the selected motor.

Design/methodology/approach

This paper presents a study to improve the power density and efficiency of e-motors for electric traction applications with high operating speed. The studied machine is a yokeless-stator axial flux permanent magnet synchronous motor with a dual rotor. The methodology consists in using different magnetic materials for an optimal design of the stator and rotor magnetic circuits to improve the motor performance. The candidate magnetic materials, adapted to the constraints of e-mobility, are made of thin laminations of Si-Fe nonoriented grain electrical steel, Si-Fe grain-oriented electrical steel (GOES) and iron-cobalt Permendur electrical steel (Co-Fe).

Findings

The mixed GOES-Co-Fe structure allows to reach 10 kW/kg in rated power density and a high efficiency in city driving conditions. This structure allows to make the powertrain less energy consuming in the battery electric vehicles and to reduce CO2 emissions in hybrid electric vehicles.

Originality/value

The originality of this study lies in the improvement of both power density and efficiency of the electric motor in automotive application by using different magnetic materials through a multiobjective optimization.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 May 2023

Marek Hreczka, Roman Kolano, Aleksandra Kolano-Burian, Wojciech Burlikowski and Janusz Hetmańczyk

The purpose of this paper is to verify results related to losses in the core of a brushless DC prototype motor, obtained using its computer FE models, by experimental tests on…

Abstract

Purpose

The purpose of this paper is to verify results related to losses in the core of a brushless DC prototype motor, obtained using its computer FE models, by experimental tests on manufactured machines. The paper focuses on the comparison of losses in the core of a machine with a classical stator core made of an iron–silicon material (Fe–Si) and a new one made of a modern METGLAS material.

Design/methodology/approach

Computer models of the prototype motors were created using FEM. The designed machines were manufactured, and experimental tests were performed. To achieve high frequencies in rotating magnetic fields, motors with a stator to rotor pole ratio of 9/12 were built. Twin rotor approach was applied, as two identical rotors were built along the two geometrically identical stators made of different core materials.

Findings

Experimental studies have shown the superiority of the METGLAS material over the classical Fe–Si material. Material parameters were measured directly on the prepared cores as library data used in the simulation may be incorrect due to technological processes during core production, which was also verified. Problems related to twin rotor approach have been identified. Solution to the problem has been suggested. Necessity of 3D FEM modelling was identified.

Originality/value

The main source of originality is that METGLAS material used in the prototype machines was developed and manufactured by the authors themselves. Original approach to core parameter evaluation based on simplified methodology has been suggested. Another original part is a simplified methodology applied to loss measurement during no-load test.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 December 2023

Abdelazeem Hassan Shehata Atyia and Abdelrahman Mohamed Ghanim

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can…

Abstract

Purpose

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can correctly reproduce some typical behaviours of these magnetic materials. Among these, the model proposed by Jiles and Atherton must certainly be mentioned. This model is intuitive and fairly easy to implement and identify with relatively few experimental data. Also, for this reason, it has been extensively studied in different formulations. The developments and numerical tests made on this hysteresis model have indicated that it is able to accurately reproduce symmetrical cycles, especially the major loop, but often it fails to reproduce non-symmetrical cycles. This paper aims to show the positive aspects and highlight the defects of the different formulations in predicting the minor loops of electrical steels excited by non-sinusoidal currents.

Design/methodology/approach

The different formulations are applied to different electrical steels, and the data coming from the simulations are compared with those measured experimentally. The direct and inverse Jiles–Atherton models, including the introduction of the dissipative factor approach, are presented, and their limitations are proposed and validated using the measurements of three non-grain-oriented materials. Only the measured major loop is used to identify the parameters of the Jiles–Atherton model. Furthermore, the direct and inverse Jiles–Atherton models were used to simulate the minor loops as well as the hysteresis cycles with direct component (DC) bias excitation. Finally, the simulation results are discussed and compared to measurements for each study case.

Findings

The paper indicates that both the direct and the inverse Jiles–Atherton model formulations provide a good agreement with the experimental data for the major loop representation; nevertheless, both models can not accurately predict the minor loops even when the modification approaches proposed in the literature were implemented.

Originality/value

The Jiles–Atherton model and its modifications are widely discussed in the literature; however, some limitations of the model and its modification in the case of the distorted current waveform are not completely highlighted. Furthermore, this paper contains an original discussion on the accuracy of the prediction of minor loops from distorted current waveforms, including DC bias.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 February 2023

Bin Chen, Binsheng Xi, Nina Wan, Shuaibing Wang and Bo Tang

Because the nanocrystalline core is widely used in power electronic equipment, and the excitation waveform of its working mode is complex, the vibration at medium and high…

77

Abstract

Purpose

Because the nanocrystalline core is widely used in power electronic equipment, and the excitation waveform of its working mode is complex, the vibration at medium and high frequencies cannot be ignored. Therefore, this study aims to study the vibration mechanism of nanocrystalline strip and the vibration characteristics of nanocrystalline magnetic ring under different excitation waveforms.

Design/methodology/approach

First, the electromagnetic vibration mechanism between nanocrystalline strips is analyzed by finite element analysis, and the force of the magnetic ring with and without air gap is compared and analyzed. Then, the vibration of nanocrystalline magnetic ring under different excitation waveforms such as sine wave, triangular wave, symmetric rectangular wave and asymmetric rectangular wave is analyzed by experimental method. The acceleration time domain waveform measured by the experiment is analyzed by fast Fourier transform, and the vibration is analyzed according to the spectrum.

Findings

Because of the increase of magnetic flux leakage, the volume force density and the Maxwell force on the surface of the nanocrystalline magnetic ring will increase after the air gap is opened, resulting in the intensification of vibration. Under symmetric/asymmetric rectangular wave excitation, the vibration acceleration varies with the duty cycle. Due to the influence of harmonic excitation, the relationship between the main frequency of vibration and the excitation frequency is not two times, and its multiple decreases with the increase of excitation frequency.

Originality/value

The research and analysis of this paper can promote the application of new magnetic materials in electrical equipment in small and medium-sized and medium- to high-frequency fields.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 April 2024

Zhenbao Wang, Zhen Yang, Mengyu Liu, Ziqin Meng, Xuecheng Sun, Huang Yong, Xun Sun and Xiang Lv

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of…

Abstract

Purpose

Microribbon with meander type based on giant magnetoimpedance (GMI) effect has become a research hot spot due to their higher sensitivity and spatial resolution. The purpose of this paper is to further optimize the line spacing to improve the performance of meanders for sensor application.

Design/methodology/approach

The model of GMI effect of microribbon with meander type is established. The effect of line spacing (Ls) on GMI behavior in meanders is analyzed systematically.

Findings

Comparison of theory and experiment indicates that decreasing the line spacing increases the negative mutual inductance and a consequent increase in the GMI effect. The maximum value of the GMI ratio increases from 69% to 91.8% (simulation results) and 16.9% to 51.4% (experimental results) when the line spacing is reduced from 400 to 50 µm. The contribution of line spacing versus line width to the GMI ratio of microribbon with meander type was contrasted. This behavior of the GMI ratio is dominated by the overall negative contribution of the mutual inductance.

Originality/value

This paper explores the effect of line spacing on the GMI ratio of meander type by comparing the simulation results with the experimental results. The superior line spacing is found in the identical sensing area. The findings will contribute to the design of high-performance micropatterned ribbon with meander-type GMI sensors and the establishment of a ribbon-based magnetic-sensitive biosensing system.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Abstract

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 27 March 2023

Xiao Xiao, Fabian Müller, Martin Marco Nell and Kay Hameyer

The goal of this research is to investigate the convergence behavior of the Newton iteration, when solving the nonlinear problem with consideration of hysteresis effects…

Abstract

Purpose

The goal of this research is to investigate the convergence behavior of the Newton iteration, when solving the nonlinear problem with consideration of hysteresis effects. Incorporating the vector hysteresis model in the magnetic vector potential formulation has encountered difficulties. One of the reasons is that the Newton method is very sensitive regarding the starting point and states distinct requirements for the nonlinear function in terms of monotony and smoothness. The other reason is that the differential reluctivity tensor of the material model is discontinuous due to the properties of the stop operators. In this work, line search methods to overcome these difficulties are discussed.

Design/methodology/approach

To stabilize the Newton iteration, line search methods are studied. The first method computes an error-oriented search direction. The second method is based on the Wolfe-Powell rule using the Armijo condition and curvature condition.

Findings

In this paper, the differentiation of the vector stop model, used to evaluate the Jacobian matrix, is studied. Different methods are applied for this nonlinear problem to ensure reliable and stable finite element simulations with consideration of vector hysteresis effects.

Originality/value

In this paper, two different line search Newton methods are applied to solve the magnetic field problems with consideration of vector hysteresis effects and ensure a stable convergence successfully. A comparison of these two methods in terms of robustness and efficiency is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 12 December 2022

Mitja Garmut, Simon Steentjes and Martin Petrun

Small highly saturated interior permanent magnet- synchronous machines (IPMSMs) show a very nonlinear behaviour. Such machines are mostly controlled with a closed-loop cascade…

Abstract

Purpose

Small highly saturated interior permanent magnet- synchronous machines (IPMSMs) show a very nonlinear behaviour. Such machines are mostly controlled with a closed-loop cascade control, which is based on a d-q two-axis dynamic model with constant concentrated parameters to calculate the control parameters. This paper aims to present the identification of a complete current- and rotor position-dependent d-q dynamic model, which is derived by using a finite element method (FEM) simulation. The machine’s constant parameters are determined for an operation on the maximum torque per ampere (MTPA) curve. The obtained MTPA control performance was evaluated on the complete FEM-based nonlinear d-q model.

Design/methodology/approach

A FEM model was used to determine the nonlinear properties of the complete d-q dynamic model of the IPMSM. Furthermore, a fitting procedure based on the nonlinear MTPA curve is proposed to determine adequate constant parameters for MTPA operation of the IPMSM.

Findings

The current-dependent d-q dynamic model of the machine models the relevant dynamic behaviour of the complete current- and rotor position-dependent FEM-based d-q dynamic model. The most adequate control response was achieved while using the constant parameters fitted to the nonlinear MTPA curve by using the proposed method.

Originality/value

The effect on the motor’s steady-state and dynamic behaviour of differently complex d-q dynamic models was evaluated. A workflow to obtain constant set of parameters for the decoupled operation in the MTPA region was developed and their effect on the control response was analysed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 January 2024

Lazhar Roubache, Kamel Boughrara, Frédéric Dubas, Brahim Ladghem Chikouche and Rachid Ibtiouen

This paper aims to propose a semianalytical model of a squirrel-cage induction machine (SCIM), considering local magnetic saturation and eddy-currents induced in the rotor bars.

Abstract

Purpose

This paper aims to propose a semianalytical model of a squirrel-cage induction machine (SCIM), considering local magnetic saturation and eddy-currents induced in the rotor bars.

Design/methodology/approach

The regions of the rotor and stator are divided into elementary subdomains (E-SDs) characterized by general solutions at the first harmonic of the magneto-harmonic Maxwell’s equations. These E-SDs are connected in both directions (i.e., along the r- and θ-edges).

Findings

The calculation of the magnetic field has been validated for various values of slip and iron permeability. All electromagnetic quantities were compared with those obtained using a two-dimensional finite-element method. The semianalytical results are satisfactory compared with the numerical results, considering both the amplitude and waveform.

Originality/value

Expansion of the recent analytical model (E-SD technique) for the full prediction of the magnetic field in SCIMs, considering the local saturation effect and the eddy-currents induced in the rotor bars.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 13 September 2022

Modupeola Dada, Patricia Popoola, Ntombi Mathe, Sisa Pityana and Samson Adeosun

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive…

Abstract

Purpose

In this study, AlCoCrFeNi–Cu (Cu-based) and AlCoCrFeNi–Ti (Ti-based) high entropy alloys (HEAs) were fabricated using a direct blown powder technique via laser additive manufacturing on an A301 steel baseplate for aerospace applications. The purpose of this research is to investigate the electrical resistivity and oxidation behavior of the as-built copper (Cu)- and titanium (Ti)-based alloys and to understand the alloying effect, the HEAs core effects and the influence of laser parameters on the physical properties of the alloys.

Design/methodology/approach

The as-received AlCoCrFeNiCu and AlCoCrFeNiTi powders were used to fabricate HEA clads on an A301 steel baseplate preheated at 400°C using a 3 kW Rofin Sinar dY044 continuous-wave laser-deposition system fitted with a KUKA robotic arm. The deposits were sectioned using an electric cutting machine and prepared by standard metallographic methods to investigate the electrical and oxidation properties of the alloys.

Findings

The results showed that the laser power had the most influence on the physical properties of the alloys. The Ti-based alloy had better resistivity than the Cu-based alloy, whereas the Cu-based alloy had better oxidation residence than the Ti-based alloy which attributed to the compositional alloying effect (Cu, aluminum and nickel) and the orderliness of the lattice, which is significantly associated with the electron transportation; consequently, the more distorted the lattice, the easier the transportation of electrons and the better the properties of the HEAs.

Originality/value

It is evident from the studies that the composition of HEAs and the laser processing parameters are two significant factors that influence the physical properties of laser deposited HEAs for aerospace applications.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 130