Search results

1 – 10 of over 2000
Article
Publication date: 16 March 2011

B. Ślusarek and M. Przybylski

The paper deals with methods of tailoring magnetic properties of soft and hard magnetic composites. Comparison of magnetic properties of injection moulding and compression…

Abstract

The paper deals with methods of tailoring magnetic properties of soft and hard magnetic composites. Comparison of magnetic properties of injection moulding and compression moulding Nd-Fe-B magnets are presented. Magnetic properties of Nd-Fe-B bonded magnets were tailored by different ways such as: amount of resin, addition of barium ferrite, Al or Fe powders. Influence of technological parameters such as compression pressure, time and temperature of curing on magnetic parameters of Nd-Fe-B bonded magnets are presented in the paper. Magnetic properties of soft magnetic composites made of Fe, Ni, Co are presented in the paper. Influence of technological parameters such as compression pressure, time and temperature of curing on magnetic parameters of iron soft magnetic composites are presented also in the paper.

Details

World Journal of Engineering, vol. 8 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 May 2022

Minglei Yang, Zaimin Zhong, Qinglong Wang and Zhongshu Shao

The purpose of this study is to propose an analytical model with consideration of the permeability of soft-magnetic materials, which can predict the magnetic field distribution…

Abstract

Purpose

The purpose of this study is to propose an analytical model with consideration of the permeability of soft-magnetic materials, which can predict the magnetic field distribution more accurately and facilitate the initial design and parameter optimization of the machine.

Design/methodology/approach

This paper proposes an analytical model of stator yokeless radial flux dual rotor permanent magnet synchronous machine (SYRFDR-PMSM) with the consideration of magnetic saturation of soft-magnetic material. The analytical model of SYRFDR-PMSM is divided into seven regions along the radial direction according to the different excitation source and magnetic medium, and the iron permeability in each region is considered based on the Maxwell–Fourier method and Cauchy’s product theorem. The magnetic vector potential of each region is obtained by the Laplace’s or Poisson’s equation, and the magnetic field solution is determined using the boundary conditions of adjacent regions.

Findings

The inner and outer air-gap flux density, flux linkage, output torque, etc., of SYRFDR-PMSM are predicted by analytical model, resulting in good agreement with that of finite element model. Additionally, the SYRFDR-PMSM prototype is manufactured and the correctness of analytical model is further verified by experiments on no-load back electromotive force and current–torque curve. Reasonable design of the slot opening width and pole arc coefficient can improve the average output torque and reduce output torque ripple.

Research limitations/implications

The analytical model proposed in this paper assumes that the permeability of soft-magnetic material is a fixed value. However, the actual iron’s permeability varies nonlinearly; thus, the prediction results of the analytical model will have some deviations from the actual machine.

Originality/value

The main contribution of this paper is to propose an accurate magnetic field analytical model of SYRFDR-PMSM. It takes into account the permeability of soft-magnetic material and slot opening, which can quickly and accurately predict the electromagnetic performance of SYRFDR-PMSM. It can provide assistance for the initial design and optimization of SYRFDR-PMSM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 July 2019

Naoya Watanabe, Yasuhito Takahashi and Koji Fujiwara

This paper aims to propose an effective modeling method of dynamic hysteresis properties for soft magnetic composite (SMC) core using an equivalent circuit representation. Because…

98

Abstract

Purpose

This paper aims to propose an effective modeling method of dynamic hysteresis properties for soft magnetic composite (SMC) core using an equivalent circuit representation. Because the eddy currents flowing inside iron powder particles should be considered, it is well known that an accurate magnetic field analysis of the SMC core in a wide range of excitation frequency is not easy. To overcome this difficulty, a dynamic hysteresis modeling based on the standard Cauer circuit is investigated.

Design/methodology/approach

In the proposed method, the first inductance represents the static magnetic property of the SMC, and the latter part represents the dynamic effect because of the eddy currents. The values of the circuit elements were determined by an optimization method based on symmetric loops measured at several frequencies. To verify the validity of the proposed modeling method, finite-element analyses of a ring core inductor and an alternating current reactor were performed.

Findings

By comparing the simulated and measured magnetic properties, the necessity to consider magnetic hysteresis in the equivalent circuit model is clarified. Furthermore, the frequency-dependent inductances of practical reactors can be obtained from the finite-element analysis combined with the proposed method.

Originality/value

This paper demonstrates the significance of determining the circuit parameters in the equivalent circuit for dynamic hysteresis modeling based on the measured magnetic properties. The effectiveness of the proposed method is verified by comparing frequency-dependent inductances of two kinds of reactors between the simulation and measurement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 18 February 2019

Tuomas Riipinen, Sini Metsä-Kortelainen, Tomi Lindroos, Janne Sami Keränen, Aino Manninen and Jenni Pippuri-Mäkeläinen

The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).

4267

Abstract

Purpose

The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).

Design/methodology/approach

Ternary soft magnetic Fe-49Co-2V powder was produced by gas atomization and used in an L-PBF machine to produce samples for material characterization. The L-PBF process parameters were optimized for the material, using a design of experiments approach. The printed samples were exposed to different heat treatment cycles to improve the magnetic properties. The magnetic properties were measured with quasi-static direct current and alternating current measurements at different frequencies and magnetic flux densities. The mechanical properties were characterized with tensile tests. Electrical resistivity of the material was measured.

Findings

The optimized L-PBF process parameters resulted in very low porosity. The magnetic properties improved greatly after the heat treatments because of changes in microstructure. Based on the quasi-static DC measurement results, one of the heat treatment cycles led to magnetic saturation, permeability and coercivity values comparable to a commercial Fe-Co-V alloy. The other heat treatments resulted in abnormal grain growth and poor magnetic performance. The AC measurement results showed that the magnetic losses were relatively high in the samples owing to formation of eddy currents.

Research limitations/implications

The influence of L-PBF process parameters on the microstructure was not investigated; hence, understanding the relationship between process parameters, heat treatments and magnetic properties would require more research.

Originality/value

The relationship between microstructure, chemical composition, heat treatments, resistivity and magnetic/mechanical properties of L-PBF processed Fe-Co-V alloy has not been reported previously.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 June 2019

Mariusz Najgebauer, Jan Szczyglowski, Barbara Slusarek and Marek Przybylski

The purpose of this paper is to examine scaling algorithms in the description and modelling of power loss in soft magnetic composites (SMCs).

Abstract

Purpose

The purpose of this paper is to examine scaling algorithms in the description and modelling of power loss in soft magnetic composites (SMCs).

Design/methodology/approach

Three scaling algorithms are examined to determine the most appropriate description of power loss in magnetic composites. The scaling coefficients are estimated in such a way that all measurement data should be collapsed onto a single curve, given in the scaled coordinates. The coefficient estimation is based on a non-linear optimization using the generalized reduced gradient method. The obtained formulae are then used in the power loss modelling.

Findings

It is revealed that only two-component formulae are suitable for the scaling analysis of power loss because these allow obtaining of the collapse of measurement data.

Research limitations/implications

This study considers just one type of SMC (Somaloy 700). Further research will be devoted to the verification of the scaling approach to the power loss modelling for other types of magnetic composites.

Practical implications

The power loss is a basic property of soft magnetic materials, which determines their practical applications. The scaling approach to the power loss modelling gives quite simple models that require a reduced number of measurement data to estimate coefficients.

Originality/value

The scaling algorithms can be a useful tool in the analysis and designing of magnetic circuits made of SMCs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Jan Karthaus, Simon Steentjes, Nora Leuning and Kay Hameyer

The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield…

Abstract

Purpose

The purpose of this paper is to study the variation of the specific iron loss components of electrical steel sheets when applying a tensile mechanical load below the yield strength of the material. The results provide an insight into the iron loss behaviour of the laminated core of electrical machines which are exposed to mechanical stresses of diverse origins.

Design/methodology/approach

The specific iron losses of electrical steel sheets are measured using a standardised single-sheet tester equipped with a hydraulic pressure cylinder which enables application of a force to the specimen under test. Based on the measured data and a semi-physical description of specific iron losses, the stress-dependency of the iron loss components can be studied.

Findings

The results show a dependency of iron loss components on the applied mechanical stress. Especially for the non-linear loss component and high frequencies, a large variation is observed, while the excess loss component is not as sensitive to high mechanical stresses. Besides, it is shown that the stress-dependent iron loss prediction approximates the measured specific iron losses in an adequate way.

Originality/value

New applications such as high-speed traction drives in electric vehicles require a suitable design of the electrical machine. These applications require particular attention to the interaction between mechanical influences and magnetic behaviour of the machine. In this regard, knowledge about the relation between mechanical stress and magnetic properties of soft magnetic material is essential for an exact estimation of the machine’s behaviour.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Barbara Ślusarek, Jan Szczyglowski, Krzysztof Chwastek and Bartosz Jankowski

– The purpose of this paper is to examine the relationships between processing conditions and magnetic properties of cores made of Soft Magnetic Composite (SMC) Somaloy 500.

Abstract

Purpose

The purpose of this paper is to examine the relationships between processing conditions and magnetic properties of cores made of Soft Magnetic Composite (SMC) Somaloy 500.

Design/methodology/approach

The effects of compaction pressure and hardening temperature may be combined considering SMC density. This quantity may be chosen for optimization of properties of ready-made cores. In order to describe hysteresis loops the phenomenological model based on hyperbolic tangent transformation is applied.

Findings

SMC density affects substantially the shape of hysteresis loop. The paper provides a number of charts useful for checking how the parameters of the hysteresis model are affected.

Research limitations/implications

The present study considers just one composition of the SMC and one type of lubricant. Future research shall be devoted to verification of the approach on a wider class of SMCs.

Practical implications

Material density may be a relevant quantity in optimization of magnetic properties of ready-made SMC cores. The simple hysteresis model based on the, “effective field” concept and Takács’ idea of hyperbolic tangent transformation may be useful for description of hysteresis curves of SMC cores. Model parameters are sensitive against variations of material density.

Originality/value

The results of the analysis may be useful for designers of magnetic circuits made of SMCs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 September 2013

Rindra Ramarotafika, Abdelkader Benabou and Stéphane Clénet

Classically the magnetic material models are considered with a deterministic approach. Nevertheless, when submitted to the fabrication process, the magnetic core properties are…

Abstract

Purpose

Classically the magnetic material models are considered with a deterministic approach. Nevertheless, when submitted to the fabrication process, the magnetic core properties are negatively impacted and may be subject to variability during the process. This variability can be of such importance that the performances of the final device (electrical machine) will also present a noticeable variability. The aim of this research is to develop a stochastic model of the magnetic behaviour law of slinky stators used in claw pole generators. The proposed methodology is general and can be applied to other physical properties of electrical devices.

Design/methodology/approach

The approach is based on a methodology that uses experimental data and a statistical description of the magnetic properties. To that end, a set of samples issued from the same chain of assembly is considered. The hysteresis model is then developed by accounting for the parameter correlation structure.

Findings

It is found that the magnetic hysteresis properties of the studied samples can be modelled by means of statistical tools applied to the parameters of the hysteresis model. The dependency of the parameters can also be accounted for a more accurate modelling.

Originality/value

The paper proposes a statistical approach and a methodology that are applied to the hysteresis modelling accounting for the variability of the magnetic properties. The developed model can be further used in a numerical tool to represent the impact on the performances of electrical devices that are subject to the fabrication process variability.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 May 2015

Andreas Ruf, Simon Steentjes, David Franck and Kay Hameyer

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the…

Abstract

Purpose

The purpose of this paper is to focus on the frequency-dependent non-linear magnetization behaviour of the soft magnetic material, which influences both the energy loss and the performance of the electrical machine. The applied approach is based on measured material characteristics for various frequencies and magnetic flux densities. These are varied during the simulation according to the operational conditions of the rotating electrical machine. Therewith, the fault being committed neglecting the frequency-dependent magnetization behaviour of the magnetic material is examined in detail.

Design/methodology/approach

The influence of non-linear frequency-dependent material properties is studied by variation of the frequency-dependent magnetization characteristics. Two different non-oriented electrical steel grades having the same nominal losses at 1.5 T and 50 Hz, but different thickness, classified as M330-35A and M330-50A are studied in detail. Both have slightly different magnetization and loss behaviour.

Findings

This analysis corroborates that it is important to consider the frequency-dependency and saturation behaviour of the ferromagnetic material as well as its magnetic utilization when simulating electrical machines, i.e., its performance. The necessity to change the magnetization curve according to the applied frequency for the calculation of operating points depends on the applied material and the frequency range. Using materials, whose magnetization behaviour is marginally affected by frequency, causes a deviation in the flux-linkage and the electromagnetic torque in a small frequency range. However, analysing larger frequency ranges, the frequency behaviour of the material cannot be neglected. For instance, a poorer magnetizability requires a higher quadrature current to keep the same torque leading to increased copper losses. In addition, the applied iron-loss model plays a central role, since changes in magnetization behaviour with frequency lead to changes in the iron losses. In order to study the impact, the iron-loss model has to be capable to incorporate the harmonic content, because particularly the field harmonics are influenced by the shape of the magnetization curve.

Originality/value

This paper gives a close insight on the way the frequency-dependent non-linear magnetization behaviour affects the energy loss and the performance of electrical machines. Therewith measures to tackle this could be derived.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2019

Adam Jakubas, Radosław Jastrzębski and Krzysztof Chwastek

The purpose of this paper is to examine the effect of varying compaction pressure on magnetic properties of self-developed soft magnetic composite (SMC) cores. The change in shape…

Abstract

Purpose

The purpose of this paper is to examine the effect of varying compaction pressure on magnetic properties of self-developed soft magnetic composite (SMC) cores. The change in shape of ferromagnetic hysteresis curves has – in turn – the impact on the values of hysteresis model parameters. The phenomenological GRUCAD model is chosen for description of hysteresis curves.

Design/methodology/approach

Several cylinder-shaped cores have been made from a mixture of iron powder and suspense polyvinyl chloride using a hydraulic press with a form and a band with a thermocouple for controlling heat treatment conditions. The only varying parameter in the study is the compaction pressure. The magnetic properties of developed cores have been measured using a computer-acquisition card and LabView software. The obtained hysteresis curves are fitted to the equations of the phenomenological GRUCAD model. This description is compliant with the laws of irreversible thermodynamics. The variations of model parameters are presented as functions of compacting pressure.

Findings

The compaction pressure has a significant impact on magnetic properties of self-developed SMC cores. The paper provides a number of charts useful for checking how the parameters of the hysteresis model are affected.

Research limitations/implications

The present paper is limited to modelling symmetrical loops only. Description of more complex magnetization cycles is postponed to another, forthcoming paper.

Practical implications

The GRUCAD hysteresis model may be a useful tool for the designers of magnetic circuits. Its parameters depend on the processing conditions (in this study – the compaction pressure) of the SMC cores.

Originality/value

Modelling of magnetic properties of SMC cores has been carried so far using some well-known description like Preisach, Takács and Jiles–Atherton proposals. The GRUCAD model has a number of advantages, and it may be a useful alternative to the latter formalism. So far it has been used for description of hysteresis curves in conventional materials like non-oriented and grain-oriented electrical steels. In the present work, it is applied to novel SMC materials.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000