Search results

1 – 10 of 105
Article
Publication date: 3 September 2020

Dawen Xu, Qingcong Wu and Yanghui Zhu

Hand motor dysfunction has seriously reduced people’s quality of life. The purpose of this paper is to solve this problem; different soft exoskeleton robots have been developed…

Abstract

Purpose

Hand motor dysfunction has seriously reduced people’s quality of life. The purpose of this paper is to solve this problem; different soft exoskeleton robots have been developed because of their good application prospects in assistance. In this paper, a new soft hand exoskeleton is designed to help people conduct rehabilitation training.

Design/methodology/approach

The proposed soft exoskeleton is an under-actuated cable-driven mechanism, which optimizes the force transmission path and many local structures. Specifically, the path of force transmission is optimized and cables are wound around cam-shaped spools to prevent cables lose during fingers movement. Besides, a pre-tightening system is presented to adjust the preload force of the cable-tube. Moreover, a passive brake mechanism is proposed to prevent the cables from falling off the spools when the remote side is relaxed.

Findings

Finally, three control strategies are proposed to assist in rehabilitation training. Results show that the average correlation coefficient of trajectory tracking is 90.99% and this exoskeleton could provide steady clamping force up to 35 N, which could meet the demands of activities in daily living. Surface electromyography (sEMG)-based intention recognition method is presented to complete assistance and experiments are conducted to prove the effectiveness of the assisted grasping method by monitoring muscle activation, finger angle and interactive force.

Research limitations/implications

However, the system should be further optimized in terms of hardware and control to reduce delays. In addition, more clinical trials should be conducted to evaluate the effect of the proposed rehabilitation strategies.

Social implications

May improve the ability of hemiplegic patients to live independently.

Originality/value

A novel under-actuated soft hand exoskeleton structure is proposed, and an sEMG-based auxiliary grasping control strategy is presented to help hemiplegic patients conduct rehabilitation training.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 December 2022

Meby Mathew, Mervin Joe Thomas, M.G. Navaneeth, Shifa Sulaiman, A.N. Amudhan and A.P. Sudheer

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this…

Abstract

Purpose

The purpose of this review paper is to address the substantial challenges of the outdated exoskeletons used for rehabilitation and further study the current advancements in this field. The shortcomings and technological developments in sensing the input signals to enable the desired motions, actuation, control and training methods are explained for further improvements in exoskeleton research.

Design/methodology/approach

Search platforms such as Web of Science, IEEE, Scopus and PubMed were used to collect the literature. The total number of recent articles referred to in this review paper with relevant keywords is filtered to 143.

Findings

Exoskeletons are getting smarter often with the integration of various modern tools to enhance the effectiveness of rehabilitation. The recent applications of bio signal sensing for rehabilitation to perform user-desired actions promote the development of independent exoskeleton systems. The modern concepts of artificial intelligence and machine learning enable the implementation of brain–computer interfacing (BCI) and hybrid BCIs in exoskeletons. Likewise, novel actuation techniques are necessary to overcome the significant challenges seen in conventional exoskeletons, such as the high-power requirements, poor back drivability, bulkiness and low energy efficiency. Implementation of suitable controller algorithms facilitates the instantaneous correction of actuation signals for all joints to obtain the desired motion. Furthermore, applying the traditional rehabilitation training methods is monotonous and exhausting for the user and the trainer. The incorporation of games, virtual reality (VR) and augmented reality (AR) technologies in exoskeletons has made rehabilitation training far more effective in recent times. The combination of electroencephalogram and electromyography-based hybrid BCI is desirable for signal sensing and controlling the exoskeletons based on user intentions. The challenges faced with actuation can be resolved by developing advanced power sources with minimal size and weight, easy portability, lower cost and good energy storage capacity. Implementation of novel smart materials enables a colossal scope for actuation in future exoskeleton developments. Improved versions of sliding mode control reported in the literature are suitable for robust control of nonlinear exoskeleton models. Optimizing the controller parameters with the help of evolutionary algorithms is also an effective method for exoskeleton control. The experiments using VR/AR and games for rehabilitation training yielded promising results as the performance of patients improved substantially.

Research limitations/implications

Robotic exoskeleton-based rehabilitation will help to reduce the fatigue of physiotherapists. Repeated and intention-based exercise will improve the recovery of the affected part at a faster pace. Improved rehabilitation training methods like VR/AR-based technologies help in motivating the subject.

Originality/value

The paper describes the recent methods for signal sensing, actuation, control and rehabilitation training approaches used in developing exoskeletons. All these areas are key elements in an exoskeleton where the review papers are published very limitedly. Therefore, this paper will stand as a guide for the researchers working in this domain.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 October 2018

Saber Kazeminasab, Alireza Hadi, Khalil Alipour and Mohammad Elahinia

Many people suffer from injuries related to their hand. This research aims to focus on the improvement of the previously developed smart glove by using position and force control…

Abstract

Purpose

Many people suffer from injuries related to their hand. This research aims to focus on the improvement of the previously developed smart glove by using position and force control algorithms. The new smart glove may be used for both physiotherapy and assistance.

Design/methodology/approach

The proposed robot uses shape memory alloy (SMA) actuators coupled to an under-actuated tendon-driven mechanism. The proposed device, which is presented as a wearable glove attached to an actuation module, is capable of exerting extremely high forces to grasp objects in various hand configurations. The device’s performance is studied in physiotherapy and object manipulation tasks. In the physiotherapy mode, hand motion frequency is controlled, whereas the grasping force is controlled in the object manipulation mode. To simulate the proposed system behavior, the kinematic and dynamic equations of the proposed system have been derived.

Findings

The achieved results verify that the system is suitable to be used as part of a rehabilitation device in which it can flex and extend fingers with accurate trajectories and grasp objects efficiently. Specifically, it will be shown that using six SMA wires with the diameter of 0.25 mm, the proposed robot can provide 45 N gripping force for the patients.

Originality/value

The proposed robot uses SMA actuators and an under-actuated tendon-driven mechanism. The resulted robotic system, which is presented as a wearable glove attached to an actuation module, is capable of exerting extremely high force levels to grasp objects in various hand configurations. It is shown that the motion and exerted force of the robot may be controlled effectively in practice.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3808

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 October 2022

Ziyu Liao, Bai Chen, Tianzuo Chang, Qian Zheng, Keming Liu and Junnan Lv

Supernumerary robotic limbs (SRLs) are a new type of wearable robot, which improve the user’s operating and perceive the user’s environment by extra robotic limbs. There are some…

381

Abstract

Purpose

Supernumerary robotic limbs (SRLs) are a new type of wearable robot, which improve the user’s operating and perceive the user’s environment by extra robotic limbs. There are some literature reviews about the SRLs’ key technology and development trend, but the design of SRLs has not been fully discussed and summarized. This paper aims to focus on the design of SRLs and provides a comprehensive review of the ontological structure design of SRLs.

Design/methodology/approach

In this paper, the related literature of SRLs is summarized and analyzed by VOSviewer. The structural features of different types of SRLs are extracted, and then discuss the design approach and characteristics of SRLs which are different from typical wearable robots.

Findings

The design concept of SRLs is different from the conventional wearable robots. SRLs have various reconfiguration and installed positions, and it will influence the safety and cooperativeness performance of SRLs.

Originality/value

This paper focuses on discussing the structural design of SRLs by literature review, and this review will help researchers understand the structural features of SRLs and key points of the ontological design of SRLs, which can be used as a reference for designing SRLs.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 26 April 2013

Arief P. Tjahyono, Kean C. Aw, Harish Devaraj, Wisnu Surendra, Enrico Haemmerle and Jadranka Travas‐Sejdic

The purpose of this paper is to review the challenges present in the development of hand exoskeletons powered by pneumatic artificial muscles. This paper also presents the…

1262

Abstract

Purpose

The purpose of this paper is to review the challenges present in the development of hand exoskeletons powered by pneumatic artificial muscles. This paper also presents the development of a novel strain sensor and its application in a five‐fingered hand exoskeleton.

Design/methodology/approach

The issues of current hand exoskeletons powered by pneumatic artificial muscles are examined by studying the artificial muscles and the human hand anatomy. Traditional sensors are no longer suitable for applications in hand exoskeletons. A novel strain sensor was developed by depositing a conducting polymer called polypyrrole onto a natural rubber substrate through vapor phase polymerization and is used in the authors' five‐fingered hand exoskeleton.

Findings

The error of measurements from the polypyrrole strain sensor in controlling the actuation of pneumatic artificial muscles is within 1.5 mm. The small physical size and weight of the novel polypyrrole strain sensor also helped to keep the exoskeleton's profile (less than 20 mm) and total weight low (<1 kg).

Originality/value

The novel strain sensor allows the realization of hand exoskeletons that are lightweight, portable and low profile. This improves the comfort and practicality of hand exoskeletons to allow their usage outside the research environment.

Details

Industrial Robot: An International Journal, vol. 40 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 August 2014

Patrick Aubin, Kelsey Petersen, Hani Sallum, Conor Walsh, Annette Correia and Leia Stirling

Pediatric disorders, such as cerebral palsy and stroke, can result in thumb-in-palm deformity greatly limiting hand function. This not only limits children's ability to perform…

2000

Abstract

Purpose

Pediatric disorders, such as cerebral palsy and stroke, can result in thumb-in-palm deformity greatly limiting hand function. This not only limits children's ability to perform activities of daily living but also limits important motor skill development. Specifically, the isolated orthosis for thumb actuation (IOTA) is 2 degrees of freedom (DOF) thumb exoskeleton that can actuate the carpometacarpal (CMC) and metacarpophalangeal (MCP) joints through ranges of motion required for activities of daily living. The paper aims to discuss these issues.

Design/methodology/approach

IOTA consists of a lightweight hand-mounted mechanism that can be secured and aligned to individual wearers. The mechanism is actuated via flexible cables that connect to a portable control box. Embedded encoders and bend sensors monitor the 2 DOF of the thumb and flexion/extension of the wrist. A linear force characterization was performed to test the mechanical efficiency of the cable-drive transmission and the output torque at the exoskeletal CMC and MCP joints was measured.

Findings

Using this platform, a number of control modes can be implemented that will enable the device to be controlled by a patient to assist with opposition grasp and fine motor control. Linear force and torque studies showed a maximum efficiency of 44 percent, resulting in a torque of 2.39±1.06 in.-lbf and 0.69±0.31 in.-lbf at the CMC and MCP joints, respectively.

Practical implications

The authors envision this at-home device augmenting the current in-clinic and at-home therapy, enabling telerehabilitation protocols.

Originality/value

This paper presents the design and characterization of a novel device specifically designed for pediatric grasp telerehabilitation to facilitate improved functionality and somatosensory learning.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 June 2023

Nihar J. Gonsalves, Anthony Yusuf, Omobolanle Ogunseiju and Abiola Akanmu

Concrete workers perform physically demanding work in awkward postures, exposing their backs to musculoskeletal disorders. Back-support exoskeletons are promising ergonomic…

Abstract

Purpose

Concrete workers perform physically demanding work in awkward postures, exposing their backs to musculoskeletal disorders. Back-support exoskeletons are promising ergonomic interventions designed to reduce the risks of back disorders. However, the suitability of exoskeletons for enhancing performance of concrete workers has not been largely explored. This study aims to assess a passive back-support exoskeleton for concrete work in terms of the impact on the body, usability and benefits of the exoskeleton, and potential design modifications.

Design/methodology/approach

Concrete workers performed work with a passive back-support exoskeleton. Subjective and qualitative measures were employed to capture their perception of the exoskeleton, at the middle and end of the work, in terms of discomfort to their body parts, ease of use, comfort, performance and safety of the exoskeleton, and their experience using the exoskeleton. These were analyzed using descriptive statistics and thematic analysis.

Findings

The exoskeleton reduced stress on the lower back but caused discomfort to other body parts. Significant correlations were observed between perceived discomfort and usability measures. Design modifications are needed to improve the compatibility of the exoskeleton with the existing safety gears, reduce discomfort at chest and thigh, and improve ease of use of the exoskeleton.

Research limitations/implications

The study was conducted with eight concrete workers who used the exoskeleton for four hours.

Originality/value

This study contributes to existing knowledge on human-wearable robot interaction and provides suggestions for adapting exoskeleton designs for construction work.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 May 2022

Robert Bogue

This paper aims to provide an insight into recent developments in the robotic exoskeleton business by considering research, corporate activities, products and emerging…

Abstract

Purpose

This paper aims to provide an insight into recent developments in the robotic exoskeleton business by considering research, corporate activities, products and emerging applications.

Design/methodology/approach

Following a short introduction, this first provides examples of exoskeleton research involving artificial intelligence (AI). It then identifies recent market entrants and their products and discusses emerging industrial applications. Finally, conclusions are drawn.

Findings

The exoskeleton business is in a highly dynamic state. A research effort involving AI techniques seeks to impart exoskeletons with greatly enhanced capabilities, particularly in clinical applications. Many new companies have been established during the past decade, and several are exploiting academic research. The majority are targeting applications in the clinical market. The industrial sector is viewed as a key growth area, but applications remain limited, although some exist for robotic gloves, upper-body, waist and lower-body devices in the logistics, construction, automotive and other industries. Industrial applications for full-body exoskeleton are yet to progress beyond the trial stage.

Originality/value

This provides details of recent academic and corporate developments and emerging industrial applications in the robotic exoskeleton business.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 August 2022

James Tarbit, Nicole Hartley and Josephine Previte

Exoskeletons are characterized as wearable, mechanical orthoses that augment the physical performance of the wearer, enhance productivity and employee well-being when used in…

Abstract

Purpose

Exoskeletons are characterized as wearable, mechanical orthoses that augment the physical performance of the wearer, enhance productivity and employee well-being when used in value producing contexts. However, limited research involving exoskeleton usage by service employees in frontline contexts has been undertaken within service research. The purpose of this paper is to provide an overview of exoskeleton research undertaken within the context of value-producing roles, introduce exoskeletons conceptually to the service research domain, provide new conceptualizations of service exchange interactions involving physically augmented service actors and propose future avenues of exoskeleton research in alignment with key service theories.

Design/methodology/approach

A multi-disciplinary structured literature review based on the preferred reporting items for systematic reviews and meta-analyses method was undertaken across a variety of literature fields. A final selection of n = 25 papers was selected for analysis from an initial sample of N = 3,537. Given the emergent nature of exoskeleton research and the variety of methodology types used between literature fields, a thematic analysis approach was used for analysing identified papers.

Findings

The literature review identified four main themes within role-focused exoskeleton research. These themes informed proposals for future exoskeleton research with respect to key service theories and typologies. The findings demonstrate that the presence of an exoskeleton changes the behaviours and interactions of service employees. The augmented social presence AugSP typology is conceptualized to explain the influences of human enhancement technologies (HETs) within service actor interactions.

Originality/value

This research introduces the AugSP typology to conceptualize the impacts that exoskeletons and HETs impose within technologically mediated service interactions and provides a service-specific definition of exoskeleton technology to guide future service research involving the technology.

Details

Journal of Services Marketing, vol. 37 no. 3
Type: Research Article
ISSN: 0887-6045

Keywords

1 – 10 of 105