Search results

1 – 10 of 222
Article
Publication date: 1 August 2001

Jennie S. Hwang, Zhenfeng Guo and Holger Koenigsmann

With the established surface mount infrastructure and the temperature constraints of components and printed circuit boards, the melting temperatures of lead‐free solder alloys

Abstract

With the established surface mount infrastructure and the temperature constraints of components and printed circuit boards, the melting temperatures of lead‐free solder alloys need to be designed as close to 63Sn/37Pb as practical, and not to exceed 215°C. However, metallurgically, the Sn‐based lead‐free solders cannot approach a melting point as low as 183°C without incorporating a high content of low‐melting elements such as In, Bi or Ga. Incorporating such high contents of these elements involves prohibitive mechanical properties and/or cost. Nonetheless, it has been found that a low dosage of one or more low‐melting point elements within a well designed alloy composition can achieve superior performance to 63Sn/37Pb without incurring an unacceptable cost. To avoid prohibitive cost and/or mechanical properties, whilst achieving the melting temperature requirement, the thresholds for each of these elements, as examples, are found to be In ≤q 6 wt.%, Bi < 4 wt.% or Ga ≤q 0.5 wt.%. This paper summarises the results for one of the lead‐free systems studied within a ten‐year research program.

Details

Soldering & Surface Mount Technology, vol. 13 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 December 2022

Asyraf Abdullah and Siti Rabiatull Aisha Idris

This study aims to review the effect of copper percentage in Sn-based solder alloys (Sn-xCu, x = 0–5 Wt.%) on intermetallic compound (IMC) formation and growth after laser…

Abstract

Purpose

This study aims to review the effect of copper percentage in Sn-based solder alloys (Sn-xCu, x = 0–5 Wt.%) on intermetallic compound (IMC) formation and growth after laser soldering.

Design/methodology/approach

This study reviews the interfacial reactions at the solder joint interface, solder joint morphology and the theory on characterizing the formation and growth of IMCs. In addition, the effects of alloying and strengthening mechanism, including wettability, melting and mechanical properties are discussed.

Findings

This paper presents a comprehensive overview of the composition of tin-copper (Sn-Cu) solders with a potential to enhance their microstructure, mechanical characteristics and wettability by varying the Cu percentage. The study found that the best Cu content in the Sn-xCu solder alloy was 0.6–0.7 Wt.%; this composition provided high shear strength, vibration fracture life value and ideal IMC thickness. A method of solder alloy preparation was also found through powder metallurgy and laser soldering to improve the solder joint reliability.

Research limitations/implications

This study focuses on interfacial reactions at the solder joint interface, solder joint morphology, modelling simulation of joint strength and the theory on characterising the formation and growth of IMC.

Originality/value

The paper comprehensively summarises the useful findings of the Sn-Cu series. This information will be important for future trends in laser soldering on solder joint formation.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 April 2016

Amir Hossein Nobari, Mehran Maalekian, Karl Seelig and Mihriban Pekguleryuz

The purpose of this paper is to investigate the effect of Sb (0, 0.2 and 2 wt.%) on wetting performance of lead-free solder of near eutectic Sn-Cu micro-alloyed with Ni and Ge.

154

Abstract

Purpose

The purpose of this paper is to investigate the effect of Sb (0, 0.2 and 2 wt.%) on wetting performance of lead-free solder of near eutectic Sn-Cu micro-alloyed with Ni and Ge.

Design/methodology/approach

The melting characteristic of the lead-free alloys was studied using differential scanning calorimetry. Wettability was examined using wetting balance test for two liquid fluxes, water based and alcohol based in two temperatures 265°C and 277°C. Also, contact angle was measured using sessile drop test.

Findings

It is shown that 0.2 wt.% Sb reduces the melting temperature and pasty range. Moreover, the addition of 0.2 wt.% Sb improves wetting behavior for alcohol-based flux. It is also demonstrated that the effect of Sb on meniscus height in wetting balance test and contact angle in sessile drop test follows the trend of wetting performance.

Originality/value

It is found that adding 0.2 wt.% Sb improves the wettability of Ni-Ge micro-alloyed Sn-Cu solder; however, higher concentration of Sb does not benefit the alloy.

Details

Soldering & Surface Mount Technology, vol. 28 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 June 1997

P.T. Vianco and J.A. Rejent

A test procedure was developed to assess the capillary flow wettability of soldersinside a confined geometry. The test geometry comprised two parallel plates with a controlledgap…

306

Abstract

A test procedure was developed to assess the capillary flow wettability of solders inside a confined geometry. The test geometry comprised two parallel plates with a controlled gap of constant thickness (0.008 cm, 0.018 cm, 0.025 cm and 0.038 cm). Capillary flow was assessed by: (1) the meniscus or capillary rise of the solder within the gap; (2) the extent of void formation in the gap; and (3) the time dependence of the risen solder film. Tests were performed with the lead‐free solders 95Sn‐5Sb, 96.5Sn‐3.5Ag, and 91.84Sn‐3.33Ag‐4.83Bi. The capillary rise of the lead‐free solders was less than that observed with the 63Sn‐37Pb control. Reducing the solder surface tension and contact angle improved capillary flow. Void formation by the non lead solders increased as the gap became smaller. The extent of voiding was determined primarily by the gap size rather than the wettability parameters (contact angle or surface tension) of the individual alloys.

Details

Soldering & Surface Mount Technology, vol. 9 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 June 2021

Rafael Kakitani, Cassio Augusto Pinto da Silva, Bismarck Silva, Amauri Garcia, Noé Cheung and José Eduardo Spinelli

Overall, selection maps about the extent of the eutectic growth projects the solidification velocities leading to given microstructures. This is because of limitations of most of…

Abstract

Purpose

Overall, selection maps about the extent of the eutectic growth projects the solidification velocities leading to given microstructures. This is because of limitations of most of the set of results when obtained for single thermal gradients within the experimental spectrum. In these cases, associations only with the solidification velocity could give the false impression that reaching a given velocity would be enough to reproduce a result. However, that velocity must necessarily be accompanied by a specific thermal gradient during transient solidification. Therefore, the purpose of this paper is to not only project velocity but also include the gradients acting for each velocity.

Design/methodology/approach

Compilation of solidification velocity, v, thermal gradient, G, and cooling rate, Ṫ, data for Sn-Cu and Sn-Bi solder alloys of interest is presented. These data are placed in the form of coupled growth zones according to the correlated microstructures in the literature. In addition, results generated in this work for Sn-(0.5, 0.7, 2.0, 2.8)% Cu and Sn-(34, 52, 58)% Bi alloys solidified under non-stationary conditions are added.

Findings

When analyzing the cooling rate (Ṫ = G.v) and velocity separately, in or around the eutectic composition, a consensus cannot be reached on the resulting microstructure. The (v vs. G) + cooling rate diagrams allow comprehensive analyzes of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys.

Originality/value

The present paper is devoted to the establishment of (v vs. G) + cooling rate diagrams. These plots may allow comprehensive analyses of the combined v and G effects on the subsequent microstructure of the Sn-Cu and Sn-Bi alloys. This microstructure-processing mapping approach is promising to predict phase competition and resulting microstructures in soldering of Sn-Cu and Sn-Bi alloys. These two classes of alloys are of interest to the soldering industry, whereas manipulation of their microstructures is considered of utmost importance for the metallurgical quality of the product.

Details

Soldering & Surface Mount Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 April 2010

Liang Zhang, Song-bai Xue, Li-li Gao, Yan Chen, Sheng-lin Yu, Zhong Sheng and Guang Zeng

The purpose of this paper is to investigate the effects of minor addition of the rare earth (RE) element cerium, Ce, on the microstructures and creep properties of Sn-Ag-Cu solder…

Abstract

Purpose

The purpose of this paper is to investigate the effects of minor addition of the rare earth (RE) element cerium, Ce, on the microstructures and creep properties of Sn-Ag-Cu solder alloys.

Design/methodology/approach

The pure Sn, Sn-Cu alloy, Sn-Ag alloy and Cu-Ce alloy were used as raw materials. Sn-Ag-Cu alloys with different contents of RE Ce were chosen to compare with Sn-Ag-Cu. The raw materials of Sn, Sn-Cu alloy, Sn-Ag alloy, Cu-Ce alloy were melted in a ceramic crucible, and were melted at 550°C ± 1°C for 40 minutes. To homogenize the solder alloy, mechanical stirring was performed every ten minutes using a glass rod. During the melting, KC1 + LiCI (1.3:1), were used over the surface of liquid solder to prevent oxidation. The melted solder was chill cast into a rod.

Findings

It is found that the microstructure exhibits smaller grains and the Ag3Sn/Cu6Sn5 intermetallic compound (IMC) phases are modified in matrix with the addition of Ce. In particular, the addition of 0.03 wt.% Ce to the Sn-Ag-Cu solder can refine the microstructures and decrease the thickness of the IMC layers of Sn-Ag-Cu solder alloys. Meanwhile, thermodynamic analysis showed that these phenomena could be attributed to the reduction of the driving force for Cu-Sn IMC formation due to the addition of Ce. Results calculated using the thermodynamic method are close to the above experimental data. Thus, the optimum content of Ce in Sn-Ag-Cu solder alloys should be about 0.030 percent. Additionally, the effect of Ce on the creep rupture life of Sn-Ag-Cu soldered joints was studied. It was found that the creep rupture life may be increased up to 7.5 times more than that of the original Sn-Ag-Cu alloy, when Ce accounts for 0.030 percent.

Originality/value

This paper usefully investigates the effects of the RE cerium (Ce), on the microstructures and creep properties of Sn-Ag-Cu solder alloys, optimizing the quantity of Ce in the Sn-Ag-Cu solder alloy through a thermodynamic method and by creep-rupture life testing.

Details

Soldering & Surface Mount Technology, vol. 22 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 16 January 2020

Ashutosh Sharma and Byungmin Ahn

The purpose of this paper is to investigate the influence of pulse plating current density on the morphology and solderability of Pb-free Sn-Cu solder coatings prepared from…

Abstract

Purpose

The purpose of this paper is to investigate the influence of pulse plating current density on the morphology and solderability of Pb-free Sn-Cu solder coatings prepared from alkaline stannate baths.

Design/methodology/approach

Sn-Cu solder coatings were produced from a plating solution containing sodium stannate, copper stannate, sodium hydroxide and sorbitol additive on copper substrates. The pulse plating experiments were conducted in galvanostatic mode. The plating current density was varied from 5 to 25 mA/cm2, and the morphology of the coatings was studied. The solderability of the coatings was assessed by spread ratio measurement after reflowing the solder coatings at 250°C.

Findings

The composition control of eutectic solders is always a challenge in plating. The findings show that Sn-Cu coatings prepared by pulse plating are composed of tetragonal ß-Sn structure and Cu6Sn5 compounds irrespective of bath composition and conditions. The final coatings were very dense and smooth with nodular morphology. It was shown that a eutectic composition can be achieved if we apply a current density of ∼15-20 mA/cm2. The solderability studies suggest that solder coatings plated at and beyond 15 mA/cm2 are more suitable for solder finish applications.

Originality/value

The work presents key issues in pulse electroplating of Sn-Cu solder coatings from an alkaline bath. Possible strategies to control the eutectic Sn-Cu composition by plating process are recommended.

Details

Soldering & Surface Mount Technology, vol. 32 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 May 2023

Muhammad Asyraf Abdullah and Siti Rabiatull Aisha Idris

Pb-free solders have been developed to replace the standard Sn–Pb eutectic solder since the prohibition on Pb used in solders. The Sn–Ag–Cu series of lead-free solders is the most…

Abstract

Purpose

Pb-free solders have been developed to replace the standard Sn–Pb eutectic solder since the prohibition on Pb used in solders. The Sn–Ag–Cu series of lead-free solders is the most extensively used in the electronics industry. The Ag3Sn, which forms during isothermal ageing, can significantly degrade solder joint reliability. Sn–Ag–Cu solder’s high price further hindered its use in the electronics industry. This paper aims to investigate different copper percentages into Sn–xCu solder alloy to improve its microstructure and strength performance.

Design/methodology/approach

The solder alloys used in this work were Sn–xCu, where x = 0.0, 0.3, 0.5, 0.7, 1.0 Wt.%, which was soldered onto electroless nickel immersion gold (ENIG) substrate using carbon dioxide (CO2) gas laser. Then these samples were subjected to isothermal aging for 0, 200, 500, 1,000 and 2,000 h. The Sn–xCu solder alloy was fabricated through a powder metallurgy process.

Findings

Microstructure characterization showed that Cu addition resulted in fine and rounded shape of Cu–Sn–Ni particles. Shear strength of Sn–xCu solder joints was increased with increasing Cu content, but at aging duration of 1,000 h, it dropped slightly. It is believed that the strength improved due to the increment of diffusion rate during isothermal aging.

Practical implications

In a Cu–Sn solder, the recommended amount is 1.0 Wt.% of Cu. In extensive aging procedures, it was discovered that Sn1.0Cu solder improved the reliability of solder joints. The findings indicated that the innovative solder alloys might satisfy the needs of high-reliability applications.

Originality/value

The study shows that the right amount of Cu enhances the solidification of Sn–Cu solder, increasing the shear force of the Cu–Sn solder joint. The Sn1.0Cu exhibits a ductile fracture on the top microstructure, improving the joint’s average shear strength.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 8 July 2020

Carina Morando and Osvaldo Fornaro

The purpose of this paper is to carry out a study of the evolution of the microstructure and the microhardness of Sn-Cu-Ag alloys from as-cast condition and under artificial…

88

Abstract

Purpose

The purpose of this paper is to carry out a study of the evolution of the microstructure and the microhardness of Sn-Cu-Ag alloys from as-cast condition and under artificial isothermal aging at different temperatures (100ºC and 180ºC) for a treatment time up to 500 h. A comparison with Sn-37% Pb eutectic solder samples was also made.

Design/methodology/approach

Sn-3.5%Ag, Sn-0.7%Cu and Sn-3.5%Ag-0.9%Cu were poured in two different cooling rate conditions and then aged at 100ºC (373ºK) and 180 °C (453ºK) during 500 h. Microstructural changes were observed by optical microscopy, scanning electron micrograph and energy dispersive X-ray microanalysis. Differential scanning calorimetry technique (DSC) was also used to confirm the obtained results.

Findings

A decrease up to 20% in microhardness respect to the value of the as-cast alloy was observed for both aging temperatures. These changes can be explained considering the coarsening and recrystallization of Sn dendrites present in the microstructures of all the systems studied.

Originality/value

There is no evidence of dissolution or precipitation of new phases in the range of studied temperatures that could be detected by DSC calorimetry technique. The acting mechanisms must be the result of coarsening of Sn dendrites and the residual stresses relaxation during the first stages of the isothermal aging.

Article
Publication date: 19 September 2008

M. Reid, J. Punch, M. Collins and C. Ryan

The purpose of this paper is to examine the microstructure and evaluate the intermetallic compounds in the following lead‐free solder alloys: Sn98.5Ag1.0Cu0.5 (SAC105) Sn97.5Ag2.0

2101

Abstract

Purpose

The purpose of this paper is to examine the microstructure and evaluate the intermetallic compounds in the following lead‐free solder alloys: Sn98.5Ag1.0Cu0.5 (SAC105) Sn97.5Ag2.0Cu0.5 (SAC205) Sn96.5Ag3.0Cu0.5 (SAC305) and Sn95.5Ag4.0Cu0.5 (SAC405).

Design/methodology/approach

X‐ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to identify the main intermetallics formed during solidification. Differential scanning calorimetry (DSC) was used to investigate the undercooling properties of each of the alloys.

Findings

By using XRD analysis in addition to energy dispersive spectroscopy (EDS) it was found that the main intermetallics were Cu6Sn5 and Ag3Sn in a Sn matrix. Plate‐like ε‐Ag3Sn intermetallics were observed for all four alloys. Solder alloys SAC105, SAC205 and SAC305 showed a similar microstructure, while SAC405 displayed a fine microstructure with intermetallic phases dense within the Sn matrix.

Originality/value

Currently, low‐silver content SAC alloys are being investigated due to their lower cost, however, the overall reliability of an alloy can be greatly affected by the microstructure and this should be taken into consideration when choosing an alloy. The size and number of Ag3Sn plate‐like intermetallics can affect the reliability as they act as a site for crack propagation.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 222