Search results

1 – 10 of 33
Article
Publication date: 8 March 2024

Yuchun Huang, Haishu Ma, Yubo Meng and Yazhou Mao

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Abstract

Purpose

This paper aims to study the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 to improve the tribological properties of M50 bearing steel with microporous channels.

Design/methodology/approach

M50 matrix self-lubricating composites (MMSC) were designed and prepared by filling Sn–Ag–Cu and MXene–Ti3C2 in the microporous channels of M50 bearing steel. The tribology performance testing of as-prepared samples was executed with a multifunction tribometer. The optimum hole size and lubricant content, as well as self-lubricating mechanism of MMSC, were studied.

Findings

The tribological properties of MMSC are strongly dependent on the synergistic lubrication effect of MXene–Ti3C2 and Sn–Ag–Cu. When the hole size of microchannel is 1 mm and the content of MXene–Ti3C2 in mixed lubricant is 4 wt.%, MMSC shows the lowest friction coefficient and wear rate. The Sn–Ag–Cu and MXene–Ti3C2 are extruded from the microporous channels and spread to the friction interface, and a relatively complete lubricating film is formed at the friction interface. Meanwhile, the synergistic lubrication of Sn–Ag–Cu and MXene–Ti3C2 can improve the stability of the lubricating film, thus the excellent tribological property of MMSC is obtained.

Originality/value

The results help in deep understanding of the synergistic lubrication effects of Sn–Ag–Cu and MXene–Ti3C2 on the tribological properties of M50 bearing steel. This work also provides a useful reference for the tribological design of mechanical components by combining surface texture with solid lubrication.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0381/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 August 2023

Mohammad A. Gharaibeh and Faris M. Al-Oqla

There are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly…

Abstract

Purpose

There are several lead-free solder alloys available in the industry. Over the years, the most favorable solder composition of tin-silver-copper (Sn-Ag-Cu [SAC]) has been vastly used and accepted for joining the electronic components. It is strongly believed that the silver (Ag) content has a significant impact on the solder mechanical behavior and thus solder thermal reliability performance. This paper aims to assess the mechanical response, i.e. creep response, of the SAC solder alloys with various Ag contents.

Design/methodology/approach

A three-dimensional nonlinear finite element simulation is used to investigate the thermal cyclic behavior of several SAC solder alloys with various silver percentages, including 1%, 2%, 3% and 4%. The mechanical properties of the unleaded interconnects with various Ag amounts are collected from reliable literature resources and used in the analysis accordingly. Furthermore, the solder creep behavior is examined using the two famous creep laws, namely, Garofalo’s and Anand’s models.

Findings

The nonlinear computational analysis results showed that the silver content has a great influence on the solder behavior as well as on thermal fatigue life expectancy. Specifically, solders with relatively high Ag content are expected to have lower plastic deformations and strains and thus better fatigue performance due to their higher strengths and failure resistance characteristics. However, such solders would have contrary fatigue performance in drop and shock environments and the low-Ag content solders are presumed to perform significantly better because of their higher ductility.

Originality/value

Generally, this research recommends the use of SAC solder interconnects of high silver contents, e.g. 3% and 4%, for designing electronic assemblies continuously exposed to thermal loadings and solders with relatively low Ag-content, i.e. 1% and 2%, for electronic packages under impact and shock loadings.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 27 March 2023

Y. Wu, Z.J. Zhang, L.D. Chen and X. Zhou

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature…

Abstract

Purpose

Laser soldering has attracted attention as an alternative soldering process for microsoldering due to its localized and noncontact heating, a rapid rise and fall in temperature, fluxless and easy automation compared to reflow soldering.

Design/methodology/approach

In this study, the metallurgical and mechanical properties of the Sn3.0Ag0.5Cu/Ni-P joints after laser and reflow soldering and isothermal aging were compared and analyzed.

Findings

In the as-soldered Sn3.0Ag0.5Cu/Ni-P joints, a small granular and loose (Cu,Ni)6Sn5 intermetallic compound (IMC) structure was formed by laser soldering regardless of the laser energy, and a long and needlelike (Cu,Ni)6Sn5 IMC structure was generated by reflow soldering. During aging at 150°C, the growth rate of the IMC layer was faster by laser soldering than by reflow soldering. The shear strength of as-soldered joints for reflow soldering was similar to that of laser soldering with 7.5 mJ, which sharply decreased from 0 to 100 h for both cases and then was maintained at a similar level with increasing aging time.

Originality/value

Laser soldering with certain energy is effective for reducing the thickness of IMCs, and ensuring the mechanical property of the joints was similar to reflow soldering.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 May 2023

Muhammad Asyraf Abdullah and Siti Rabiatull Aisha Idris

Pb-free solders have been developed to replace the standard Sn–Pb eutectic solder since the prohibition on Pb used in solders. The Sn–Ag–Cu series of lead-free solders is the most…

Abstract

Purpose

Pb-free solders have been developed to replace the standard Sn–Pb eutectic solder since the prohibition on Pb used in solders. The Sn–Ag–Cu series of lead-free solders is the most extensively used in the electronics industry. The Ag3Sn, which forms during isothermal ageing, can significantly degrade solder joint reliability. Sn–Ag–Cu solder’s high price further hindered its use in the electronics industry. This paper aims to investigate different copper percentages into Sn–xCu solder alloy to improve its microstructure and strength performance.

Design/methodology/approach

The solder alloys used in this work were Sn–xCu, where x = 0.0, 0.3, 0.5, 0.7, 1.0 Wt.%, which was soldered onto electroless nickel immersion gold (ENIG) substrate using carbon dioxide (CO2) gas laser. Then these samples were subjected to isothermal aging for 0, 200, 500, 1,000 and 2,000 h. The Sn–xCu solder alloy was fabricated through a powder metallurgy process.

Findings

Microstructure characterization showed that Cu addition resulted in fine and rounded shape of Cu–Sn–Ni particles. Shear strength of Sn–xCu solder joints was increased with increasing Cu content, but at aging duration of 1,000 h, it dropped slightly. It is believed that the strength improved due to the increment of diffusion rate during isothermal aging.

Practical implications

In a Cu–Sn solder, the recommended amount is 1.0 Wt.% of Cu. In extensive aging procedures, it was discovered that Sn1.0Cu solder improved the reliability of solder joints. The findings indicated that the innovative solder alloys might satisfy the needs of high-reliability applications.

Originality/value

The study shows that the right amount of Cu enhances the solidification of Sn–Cu solder, increasing the shear force of the Cu–Sn solder joint. The Sn1.0Cu exhibits a ductile fracture on the top microstructure, improving the joint’s average shear strength.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 22 August 2022

Zilong Wang, JiaCheng Zhou, Fang Liu, Yuqin Wu and Nu Yan

The purpose of this paper is to study the microstructure and properties of Sn-3.5Ag and Sn-3.5Ag-0.5Sb lead-free solder alloys with and without a rotating magnetic field (RMF).

Abstract

Purpose

The purpose of this paper is to study the microstructure and properties of Sn-3.5Ag and Sn-3.5Ag-0.5Sb lead-free solder alloys with and without a rotating magnetic field (RMF).

Design/methodology/approach

Optical microscopy, scanning electron microscopy and X-ray diffraction were used to analyze the effect of an RMF on the microstructure of the solders. Differential scanning calorimetry was used to study the influence of the RMF on the thermal characteristics of the solders. The mechanical properties of the alloys were determined by tensile measurements at different strain rates.

Findings

The ß-Sn grains and intermetallic compounds for the Sn-3.5Ag and Sn-3.5Ag-0.5Sb lead-free solder alloys were refined under an RMF, and the morphology of the ß-Sn grains changed from dendritic to equiaxed. The pasty range was significantly reduced under an RMF. The ultimate tensile strength (UTS) of Sn-3.5Ag improved under the RMF, whereas the UTS of Sn-3.5Ag-0.5Sb decreased slightly. The addition of Sb to the Sn-3.5Ag alloy significantly enhanced the UTS and elongation (El.%) of the samples. The UTS of the solder increased with increasing strain rate.

Originality/value

The results revealed that the application of RMF in the molten alloy had a significant effect on its microstructure and mechanical properties. The thermal characteristics of the Sn-3.5Ag and Sn-3.5Ag-0.5Sb solder alloys were improved under the RMF. This research is expected to fill a knowledge gap regarding the behaviour of Sn-Ag solder alloys under RMF.

Details

Soldering & Surface Mount Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 28 June 2022

Rizk Mostafa Shalaby and Musaeed Allzeleh

This study aims to study the impact of intermetallic compound on microstructure, mechanical characteristics and thermal behavior of the melt-spun Bi-Ag high-temperature lead-free…

Abstract

Purpose

This study aims to study the impact of intermetallic compound on microstructure, mechanical characteristics and thermal behavior of the melt-spun Bi-Ag high-temperature lead-free solder.

Design/methodology/approach

In this paper, a new group of lead-free high-temperature Pb-free solder bearing alloys with five weight percentages of different silver additions, Bi-Agx (x = 3.0, 3.5, 4.0, 4.5 and 5.0 Wt.%) have been developed by rapidly solidification processing (RSP) using melt-spun technique as a promising candidate for the replacement of conventional Sn-37Pb common solder. The effect of the addition of a small amount of Ag on the structure, microstructure, thermal and properties of Bi-Ag solder was analyzed by means of X-ray diffractometer, scanning electron microscopy, differential scanning calorimetry and Vickers hardness technique. Applying the RSP commonly results in departures from conventional microstructures, giving an improvement of grain refinement. Furthermore, the grain size of rhombohedral hexagonal phase Bi solid solution and cubic IMC Bi0.97Ag0.03 phase is refined by Ag addition. Microstructure analysis of the as soldered revealed that relatively uniform distribution, equiaxed refined grains of secondary IMC Bi0.97Ag0.03 particles about 10 µm for Bi-Ag4.5 dispersed in a Bi matrix. The addition of trace Ag led to a decrease in the solidus and liquidus temperatures of solder, meanwhile, the mushy zone is about 11.4°C and the melting of Sn-Ag4.5 solder was found to be 261.42°C which is lower compared with the Sn-Ag3 solder 263.60°C. This means that the silver additions into Bi enhance the melting point. The results indicate that an obvious change in electrical resistivity (?) at room temperature was noticed by the Ag addition. It was also observed that the Vickers microhardness (Hv) was increased with Ag increasing from 118 to 152 MPa. This study recommended the use of the Bi-Ag lead-free solder alloys for higher temperature applications.

Findings

Silver content is very important for the soldering process and solder joint reliability. Based on the present investigations described in this study, several conclusions were found regarding an evaluation of microstructural and mechanical deformation behavior of various Bi-Ag solders. The effect of Ag and rapid solidification on the melting characteristics, and microstructure of Bi-Ag alloys were studied. In addition, the mechanical properties of Bi with different low silver were investigated. From the present experimental study, the following conclusions can be drawn. The addition of Ag had a marked effect on the melting temperature of the lead-free solder alloys, it decreases the melting temperature of the alloy from 263.6 to 261.42°C. Bi-Ag solders are comprised of rhombohedral Hex. Bi solid solution and cubic Ag0.97Bi0.03 IMC is formed in the Bi matrix. The alloying of Ag could refine the primary Bi phase and the Bi0.97Ag0.03 IMC. With increasing Ag content, the microstructure of the Bi-Ag gradually changes from large dimples into tiny dimple-like structures. The refinement of IMC grains was restrained after silver particles were added into the matrix. The inhibition effect on the growth of IMC grains was most conspicuous when solder was doped with Ag particles. As a result, the Vickers microhardness of the Bi-Ag lead-free solder alloys was enhanced by more than 100% ranging from 118.34 to 252.95 MPa. Bi-Ag high-temperature lead-free solders are a potential candidate for replacing the tin-lead solder (Sn-37Pb) materials which are toxic to human and the environment and has already been banned.

Originality/value

This study recommended the use of the Bi-Ag lead-free solder alloys for high-temperature applications.

Details

Soldering & Surface Mount Technology, vol. 35 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 23 September 2022

Hamed Al-sorory, Mohammed S. Gumaan and Rizk Mostafa Shalaby

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu…

Abstract

Purpose

This paper aims to summarise the effects of ZnO nanoparticles (0.1, 0.3, 0.5, 0.7 and 1.0 Wt.%) on the structure, mechanical, electrical and thermal stability of Sn–3.5Ag–0.5Cu (SAC355) solder alloys for high-performance applications.

Design/methodology/approach

The phase identification and morphology of the solders were studied using X-ray diffraction and scanning electron microscopy. Thermal parameters were investigated using differential scanning calorimetry. The elastic parameters such as Young's modulus (E) and internal friction (Q−1) were investigated using the dynamic resonance technique, whereas the Vickers hardness (Hv) and creep indentation (n) were examined using a Vickers microhardness tester.

Findings

Microstructural analysis revealed that ZnO nanoparticles (NPs) were distributed uniformly throughout the Sn matrix. Furthermore, addition of 0.1, 0.3 and 0.7 Wt.% of ZnO NPs to the eutectic (SAC355) prevented crystallite size reduction, which increased the strength of the solder alloy. Mechanical parameters such as Young's modulus improved significantly at 0.1, 0.3 and 0.7 Wt.% ZnO NP contents compared to the ZnO-free alloy. This variation can be understood by considering the plastic deformation. The Vickers hardness value (Hv) increased to its maximum as the ZnO NP content increased to 0.5. A stress exponent value (n) of approximately two in most composite solder alloys suggested that grain boundary sliding was the dominant mechanism in this system. The electrical resistance (ρ) increased its maximum value at 0.5 Wt.% ZnO NPs content. The addition of ZnO NPs to plain (SAC355) solder alloys increased the melting temperature (Tm) by a few degrees.

Originality/value

Development of eutectic (SAC355) lead-free solder doped with ZnO NPs use for electronic packaging.

Details

Soldering & Surface Mount Technology, vol. 35 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 31 May 2023

Songtao Qu and Qingyu Shi

In the electronic assembly industry, low-temperature soldering holds great potential to be used in surface mounting technology. Tin–bismuth (Sn–Bi) eutectic alloys are lead-free…

Abstract

Purpose

In the electronic assembly industry, low-temperature soldering holds great potential to be used in surface mounting technology. Tin–bismuth (Sn–Bi) eutectic alloys are lead-free solders applied in consumer electronics because of their low melting point, high strength and low cost. This paper aims to investigate how to address the problem of hot tear crack formation during Sn–Bi low-temperature solder (LTS) in the mass production of consumer electronics.

Design/methodology/approach

This paper explored the development of hot tear cracks during Sn–Bi soldering in the fabrication of flip chip ball grid arrays. Experiments were designed to simulate various conditions encountered in Sn–Bi soldering. Quantitative analysis was conducted on the number of hot tear cracks observed in different alloy compositions and solder volumes to explore the primary cause of hot tear cracks and possible methods to suppress crack formation.

Findings

Hot tear cracks existed in Sn–Bi solders with different bismuth (Bi) contents, but increasing the solder volume reduced the number of hot tear cracks. Experiments were designed to test the degree of chip transient thermal warpage with temperature change, and, according to the results, glue was dispensed in specific areas to reduce chip warpage deformation. Finally, the results of combined process experiments pointed to an effective method of low-temperature soldering to suppress hot tear cracks.

Research limitations/implications

The study focuses on Sn–Bi solders only without other solder pastes such as SAC305 or Sn–Zn series.

Practical implications

With the growing popularity of smart electronics, especially in intelligent terminals, new energy vehicles electronics, solar photovoltaic and other field, there will be more and more demand for low- temperature, energy-saving, lead-free solders. Therefore, this study will help the industry to roll out LTS (Sn–Bi) solutions rapidly.

Social implications

In the long term, lean and green manufacturing is expected to be essential for maintaining an advanced manufacturing industry across the world. Developing new LTSs and soldering processes is the most effective, direct solution for energy conservation and emission mitigation. With the growing popularity of smart electronics, especially in intelligent terminals, new energy vehicles and solar photovoltaics, there would be an increased demand for low-temperature, energy-saving, lead-free techniques.

Originality/value

Although there are many methods that can be used to suppress hot tear cracks, there is little research on how to control the hot tear cracks caused by the low-temperature soldering of Sn–Bi in laptop applications. The authors studied the hot tear cracks that developed during the world’s first mass production of 50 million personal laptops based on low-temperature Sn–Bi alloy solder pastes. By controlling the Bi content, redesigning the solder paste printing process (e.g. through a printer’s stencil) and adding dispensing processes, the authors obtained reliable and stable experimental data and conclusions.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 24 January 2023

Guisheng Gan, Shi-qi Chen, Liujie Jiang, Cong Liu, Peng Ma, Tian Huang, Dayong Cheng and Xin Liu

This study aims to research properties of Cu/SAC0307 mixed solder balls/Al joints with different bonding temperature under ultrasonic-assisted.

72

Abstract

Purpose

This study aims to research properties of Cu/SAC0307 mixed solder balls/Al joints with different bonding temperature under ultrasonic-assisted.

Design/methodology/approach

A new method that 1 mm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 mm were mixed to fill the joint and successfully achieved micro-joining of Cu/Al under ultrasonic-assisted.

Findings

The results indicated that when the bonding temperature was 180°C, there was only one layer of CuZn5 intermetallic compounds (IMCs) at the Cu interface. However, when the bonding temperature was 190°C, 200°C and 210°C, the Cu interface IMCs had two layers: for one layer, the IMCs near the Cu substrate were Cu5Zn8 and for another layer, the IMCs near the solder were CuZn5. In addition, the thickness of the Cu interfacial IMCs increased with the bonding temperature. In particular, the thickness of IMCs at the Cu interface of the Cu/Al joints soldered at 210°C was 4.6 µm, which increased by 139.6% compared with that of the Cu/Al joints soldered at 180°C. However, there was no IMC layer at the Al interface, but there might be a Zn–Al solid solution layer. The shear strength of Cu/Al joints soldered at 180°C was only 15.01 MPa, but as the soldering temperature continued to increase, the shear strength of the Cu/Al joints increased rapidly. When the soldering temperature was 200°C, the shear strength of the Cu/Al joints reached the maximum of 38.07 MPa, which was 153.6% higher than that at 180°C. When the soldering temperature was 180°C, the fracture of Cu/Al joints was mainly on the Al side. However, when soldering temperature was 190°C, 200°C and 210°C, the fracture of Cu/Al joints was mainly broken in the Zn particles layer.

Originality/value

A new method that 1 mm Zn particles and Sn-0.3Ag-0.7 (SAC0307) with a particle size of 25–38 mm were mixed to fill the Cu/Al joint at 210°C.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 5 June 2023

Wei Lin, Xuewen Li, Bing Tu, Chaohua Zhang and Yulong Li

This study aims to analyze the wettability of the self-developed Sn–Bi–Zn solder and to conduct a series of analysis on the wetting kinetics, diffusion phenomenon and interfacial…

Abstract

Purpose

This study aims to analyze the wettability of the self-developed Sn–Bi–Zn solder and to conduct a series of analysis on the wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–Bi–Zn solder on Cu substrate.

Design/methodology/approach

The wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–Bi–Zn solder on Cu substrate were analyzed by experiments. The interface was observed by scanning electron microscope to study the effect of Zn content on its interface.

Findings

With the increase in brazing temperature, the final spreading equivalent radius of the solder increases significantly, and the final contact angle of the solder decreases significantly. In addition, when the Zn content is 1%, the spreading effect of solder is the best, the equivalent radius is the largest and the contact angle is the smallest. According to the microstructural analysis, the thick intermetallic compounds layer of the Sn–15Bi–xZn solders on the Cu substrate can be effectively decreased by adding appropriate Zn content.

Originality/value

The wetting kinetics, diffusion phenomenon and interfacial reaction of Sn–15Bi–xZn solder on Cu substrate at different temperatures have not been studied yet.

Details

Soldering & Surface Mount Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

1 – 10 of 33