Search results

21 – 30 of over 31000
Article
Publication date: 1 March 1993

JACOB AVRASHI and ROBERT D. COOK

This paper presents a new approach for estimating the discretization error of finite element analysis of generalized eigenproblems. The method uses smoothed gradients at nodal…

Abstract

This paper presents a new approach for estimating the discretization error of finite element analysis of generalized eigenproblems. The method uses smoothed gradients at nodal points to derive improved element‐by‐element interpolation functions. The improved interpolation functions and their gradients are used in the Rayleigh quotient to obtain an improved eigenvalue. The improved eigenvalue is used to estimate the error of the original solution. The proposed method does not require any re‐solution of the eigenproblem. Results for 1‐D and 2‐D C° eigenproblems in acoustics and elastic vibrations are used as examples to demonstrate the accuracy of the proposed method.

Details

Engineering Computations, vol. 10 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 13 March 2013

Matthew Lindsey and Robert Pavur

One aspect of forecasting intermittent demand for slow-moving inventory that has not been investigated to any depth in the literature is seasonality. This is due in part to the…

Abstract

One aspect of forecasting intermittent demand for slow-moving inventory that has not been investigated to any depth in the literature is seasonality. This is due in part to the reliability of computed seasonal indexes when many of the periods have zero demand. This chapter proposes an innovative approach which adapts Croston's (1970) method to data with a multiplicative seasonal component. Adaptations of Croston's (1970) method are popular in the literature. This method is one of the most popular techniques to forecast items with intermittent demand. A simulation is conducted to examine the effectiveness of the proposed technique extending Croston's (1970) method to incorporate seasonality.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78190-331-5

Keywords

Article
Publication date: 4 March 2024

Yongjiang Xue, Wei Wang and Qingzeng Song

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work…

Abstract

Purpose

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work aims to introduce and validate a variational sparse diffusion model that enhances the capability to maintain the definition of sharp features within meshes throughout complex processing tasks such as segmentation and repair.

Design/methodology/approach

We developed a variational sparse diffusion model that integrates a high-order L1 regularization framework with Dirichlet boundary constraints, specifically designed to preserve edge definition. This model employs an innovative vertex updating strategy that optimizes the quality of mesh repairs. We leverage the augmented Lagrangian method to address the computational challenges inherent in this approach, enabling effective management of the trade-off between diffusion strength and feature preservation. Our methodology involves a detailed analysis of segmentation and repair processes, focusing on maintaining the acuity of features on triangulated surfaces.

Findings

Our findings indicate that the proposed variational sparse diffusion model significantly outperforms traditional smooth diffusion methods in preserving sharp features during mesh processing. The model ensures the delineation of clear boundaries in mesh segmentation and achieves high-fidelity restoration of deteriorated meshes in repair tasks. The innovative vertex updating strategy within the model contributes to enhanced mesh quality post-repair. Empirical evaluations demonstrate that our approach maintains the integrity of original, sharp features more effectively, especially in complex geometries with intricate detail.

Originality/value

The originality of this research lies in the novel application of a high-order L1 regularization framework to the field of mesh processing, a method not conventionally applied in this context. The value of our work is in providing a robust solution to the problem of feature degradation during the mesh manipulation process. Our model’s unique vertex updating strategy and the use of the augmented Lagrangian method for optimization are distinctive contributions that enhance the state-of-the-art in geometry processing. The empirical success of our model in preserving features during mesh segmentation and repair presents an advancement in computer graphics, offering practical benefits to both academic research and industry applications.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 October 2018

Farhoud Kalateh and Ali Koosheh

This paper aims to propose a new smoothed particle hydrodynamics (SPH)-finite element (FE) algorithm to study fluid–structure interaction (FSI) problems.

Abstract

Purpose

This paper aims to propose a new smoothed particle hydrodynamics (SPH)-finite element (FE) algorithm to study fluid–structure interaction (FSI) problems.

Design/methodology/approach

The fluid domain is discretized based on the theory of SPH), and solid part is solved through FE method, similar to other SPH-FE methods in the previous studies. Instead of master-slave technique, the interpolating (kernel) functions of immersed boundary method are implemented to couple fluid and solid domains. The procedure of modeling completely follows the classic IB framework where forces and velocities are transferred between interacting parts. Three benchmark FSI problems are simulated and the results are compared with those of similar numerical and experimental works.

Findings

The proposed SPH-FE algorithm with promising and acceptable results can be utilized as a reliable method to simulate FSI problems.

Originality/value

Contrary to most SPH-FE algorithms, the calculation of contact force is not required at interacting boundaries and no iterative process is proposed to calculate forces, velocities and positions at new time step.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 16 December 2009

Gaosheng Ju, Rui Li and Zhongwen Liang

In this paper we construct a nonparametric kernel estimator to estimate the joint multivariate cumulative distribution function (CDF) of mixed discrete and continuous variables…

Abstract

In this paper we construct a nonparametric kernel estimator to estimate the joint multivariate cumulative distribution function (CDF) of mixed discrete and continuous variables. We use a data-driven cross-validation method to choose optimal smoothing parameters which asymptotically minimize the mean integrated squared error (MISE). The asymptotic theory of the proposed estimator is derived, and the validity of the cross-validation method is proved. We provide sufficient and necessary conditions for the uniqueness of optimal smoothing parameters when the estimation of CDF degenerates to the case with only continuous variables, and provide a sufficient condition for the general mixed variables case.

Details

Nonparametric Econometric Methods
Type: Book
ISBN: 978-1-84950-624-3

Article
Publication date: 1 January 2002

RICHARD J. KIRKHAM, A. HALIM BOUSSABAINE and MATTHEW P. KIRKHAM

Through a case study, this paper reports on a research project to develop a risk integrated methodology for forecasting the cost of electricity in a National Health Service (NHS…

Abstract

Through a case study, this paper reports on a research project to develop a risk integrated methodology for forecasting the cost of electricity in a National Health Service (NHS) acute care hospital building. The paper is formed of two strands. Strand one presents a rationale for selecting an appropriate time series forecasting method and strand two looks at the implementation of probabilistic modelling of the forecasts generated in strand one. The results of the research revealed that the Holt‐Winters multiplicative forecasting method produced the most reliable forecasts. The probabilistic modelling of the forecasts revealed that after a pair‐wise comparison between data collected at the hospital used as the case study and data collected from NHS acute care trusts nationwide, the forecasts were most likely to belong to the Weibull distribution. The results could then be used as inputs into a whole life cycle cost model or as a stand‐alone forecasting technique for predicting future electricity costs for use in the NHS Trust Financial Proforma returns.

Details

Engineering, Construction and Architectural Management, vol. 9 no. 1
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 September 2014

Annika Sorg and Manfred Bischoff

The purpose of this paper is to develop a method to model entire structures on a large scale, at the same time taking into account localized non-linear phenomena of the discrete…

Abstract

Purpose

The purpose of this paper is to develop a method to model entire structures on a large scale, at the same time taking into account localized non-linear phenomena of the discrete microstructure of cohesive-frictional materials.

Design/methodology/approach

Finite element (FEM) based continuum methods are generally considered appropriate as long as solutions are smooth. However, when discontinuities like cracks and fragmentation appear and evolve, application of models that take into account (evolving) microstructures may be advantageous. One popular model to simulate behavior of cohesive-frictional materials is the discrete element method (DEM). However, even if the microscale is close to the macroscale, DEMs are computationally expensive and can only be applied to relatively small specimen sizes and time intervals. Hence, a method is desirable that combines efficiency of FEM with accuracy of DEM by adaptively switching from the continuous to the discrete model where necessary.

Findings

An existing method which allows smooth transition between discrete and continuous models is the quasicontinuum method, developed in the field of atomistic simulations. It is taken as a starting point and its concepts are extended to applications in structural mechanics in this paper. The kinematics in the method presented herein is obtained from FEM whereas DEM yields the constitutive behavior. With respect to the constitutive law, three levels of resolution – continuous, intermediate and discrete – are introduced.

Originality/value

The overall concept combines model adaptation with adaptive mesh refinement with the aim to obtain a most efficient and accurate solution.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 12 November 2014

Kenneth D. Lawrence, Gary K. Kleinman and Sheila M. Lawrence

This research examines the use of a number of time series model structures of a moderate allocation mutual fund, PRWCX. PRWCX was rated as the top fund in its category during the…

Abstract

This research examines the use of a number of time series model structures of a moderate allocation mutual fund, PRWCX. PRWCX was rated as the top fund in its category during the past five years. The fund invests at least 50% of its total assets that the fund manager believes that have above average potential for capital growth. The remaining assets are generally invested in convertible securities, corporate and government debt bank loans, and foreign securities. Forecasting the total NAV of such a moderate allocation mutual fund, composed of an extremely large number of investments, requires a method that produces accurate results. These models are exponentially smoothing (single, double, and Winter’s Method), trend models (linear, quadratic, and exponential) are Box-Jenkins models.

Details

Advances in Business and Management Forecasting
Type: Book
ISBN: 978-1-78441-209-8

Keywords

Article
Publication date: 29 April 2021

Huan Wang, Yuhong Wang and Dongdong Wu

To predict the passenger volume reasonably and accurately, this paper fills the gap in the research of quarterly data forecast of railway passenger volume. The research results…

Abstract

Purpose

To predict the passenger volume reasonably and accurately, this paper fills the gap in the research of quarterly data forecast of railway passenger volume. The research results can also provide references for railway departments to plan railway operation lines reasonably and efficiently.

Design/methodology/approach

This paper intends to establish a seasonal cycle first order univariate grey model (GM(1,1) model) combing with a seasonal index. GM (1,1) is termed as the trend equation to fit the railway passenger volume in China from 2014 to 2018. The railway passenger volume in 2019 is used as the experimental data to verify the forecasting effect of the proposed model. The forecasting results of the seasonal cycle GM (1,1) model are compared with the traditional GM (1,1) model, seasonal grey model (SGM(1,1)), Seasonal Autoregressive Integrated Moving Average (SARIMA) model, moving average method and exponential smoothing method. Finally, the authors forecast the railway passenger volume from 2020 to 2022.

Findings

The quarterly data of national railway passenger volume have a clear tendency of cyclical fluctuations and show an annual growth trend. According to the comparison of the modeling results, the authors know that the seasonal cycle GM (1,1) model has the best prediction effect with the mean absolute percentage error of 1.32%. It is much better than the other models, reflecting the feasibility of the proposed model.

Originality/value

As the previous grey prediction model could not solve the series prediction problem with seasonal fluctuation, and there are few research studies on quarterly railway passenger volume forecasting, GM (1,1) model is taken as the trend equation and combined with the seasonal index to construct a combination forecasting model for accurate forecasting results in this study. Besides, considering the impact of the epidemic on passenger volume, the authors introduce a disturbance factor to deal with the forecasting results in 2020, making the modeling results more scientific, practical and referential.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 25 October 2018

ShiYang Pan, TongChun Li, Jing Cheng, Ping Yuan and Xinyang Ning

The purpose of the article is to extend the node-based smoothed point interpolation method (NS-PIM) for soil consolidation analysis based on the Biot’s theory.

Abstract

Purpose

The purpose of the article is to extend the node-based smoothed point interpolation method (NS-PIM) for soil consolidation analysis based on the Biot’s theory.

Design/methodology/approach

The shape functions for displacements and pore pressures are constructed using the PIM separately, leading to the Kronecker delta property and easy implementation of essential boundary conditions. Then, a benchmark problem of 2D consolidation under ramp load is solved to investigate the validity of this application. Meanwhile, convergence features of different solutions are studied. Furthermore, the incompressible and impermeable condition under instant load is investigated. The results calculated by the NS-PIM solution with different orders of shape functions are compared. Finally a 2D consolidation problem in construction period is solved. An error estimation method is applied to check the mesh quality.

Findings

The results of the NS-PIM solution show good agreement with those certified results. Useful convergence features are found when comparing the results of the NS-PIM and the FEM solutions. A simple method is introduced to estimate the errors of the model with rough grids. The convergence features and error estimation method can be applied to check the mesh quality and get accurate results. More stable results can be obtained using the NS-PIM solution with lower order of pore pressure shape functions under the incompressible and impermeable condition.

Research limitations/implications

It cannot be denied that the calculation of NS-PIM solution takes more time than that of the FEM solution, and more work needs to be carried out to optimize the NS-PIM solution. Also, in further study, the feasibility of more complicated and practical engineering problems can still be probed in the NS-PIM solution.

Practical implications

This paper introduced a method for the consolidation analysis on the situation of construction loads (“ramp load”) using the NS-PIM which is quite indispensable in many foundation problems. Also, more stable results can be obtained using the NS-PIM solution with lower order of pore pressure shape functions than that with same order of shape functions.

Originality/value

This study first focuses on the situation of construction loads (“ramp load”) in the NS-PIM consolidation analysis which is quite indispensable in many foundation problems. An error estimation method is introduced to evaluate the mesh quality and get accurate values based on the convergence features of the FEM and NS-PIM solutions. Then, the incompressible and impermeable condition under instant load is investigated, and the analysis show that the NS-PIM with lower order of pore pressure shape functions can get stable results in such conditions.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

21 – 30 of over 31000