Search results

1 – 10 of 50
Article
Publication date: 20 December 2023

Fadwa M. Al Chamaa, Ahmad El Ghor and Elie Hantouche

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Abstract

Purpose

This study aims at investigating the effect of bolt hole-making processes on the post-fire behavior of S235 steel plates.

Design/methodology/approach

A total of nine steel plates with a single bolt hole are tested. The single bolt holes are fabricated using three different hole-making processes: drilling, waterjet and plasma. Among the nine steel plates, three fabricated specimens are control specimens and are tested at ambient temperature. The six remaining steel plates with a single bolt hole are subjected to a complete heating-cooling cycle and then monotonically loaded until failure. The six fabricated specimens are first heated up to two different temperatures 800 and 925 °C, and then cooled back to the ambient prior to loading.

Findings

The results show that after being exposed to post-fire temperatures (800 and 925 °C), the maximum decrease in strength of the S235 steel plate was 6% (at 925 °C), 14% (at 925 °C) and 22% (at 800 °C) when compared to the results of ambient specimens for waterjet, drilled and plasma bolt holes, respectively. For post-fire temperature tests, drilled and waterjet bolt hole-making processes result in having approximately the same load-displacement response, and both have larger strength and ductility than those obtained using plasma cutting.

Originality/value

This study provides preliminary data to guide the steel designers and fabricators in choosing the most suitable hole-making process for fire applications and to quantify the post-fire reduction in capacity of S235 plates.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 19 April 2024

Yifan Guo, Yanling Guo, Jian Li, Yangwei Wang, Deyu Meng, Haoyu Zhang and Jiaming Dai

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering…

Abstract

Purpose

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering method and has reached the bottleneck of efficiency improvement. This study aims to develop an image-shaped laser sintering (ISLS) system based on a digital micromirror device (DMD) to address this problem. The ISLS system uses an image-shaped laser light source with a size of 16 mm × 25.6 mm instead of the traditional SLS point-laser light source.

Design/methodology/approach

The ISLS system achieves large-area image-shaped sintering of polymer powder materials by moving the laser light source continuously in the x-direction and updating the sintering pattern synchronously, as well as by overlapping the splicing of adjacent sintering areas in the y-direction. A low-cost composite powder suitable for the ISLS system was prepared using polyether sulfone (PES), pinewood and carbon black (CB) powders as raw materials. Large-sized samples were fabricated using composite powder, and the microstructure, dimensional accuracy, geometric deviation, density, mechanical properties and feasible feature sizes were evaluated.

Findings

The experimental results demonstrate that the ISLS system is feasible and can print large-sized parts with good dimensional accuracy, acceptable geometric deviations, specific small-scale features and certain density and mechanical properties.

Originality/value

This study has achieved the transition from traditional point sintering mode to image-shaped surface sintering mode. It has provided a new approach to enhance the system performance of traditional SLS.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 December 2022

Efrida Basri, Resa Martha, Ratih Damayanti, Istie Rahayu, Wayan Darmawan and Philippe Gérardin

The surface characteristics of thermally and chemically modified wood, such as surface roughness, surface free energy (SFE) and wettability, are important properties that…

Abstract

Purpose

The surface characteristics of thermally and chemically modified wood, such as surface roughness, surface free energy (SFE) and wettability, are important properties that influence further manufacturing processes such as gluing and coating. The aim of this paper was to determine the influence of the surface roughness of thermally and chemically modified teak wood on their SFE, wettability and bonding quality for water-based acrylic and solvent-based alkyd varnishes. In addition, durability against subterranean termites in the field of these modified teak woods was also investigated to give a valuable information for their further application.

Design/methodology/approach

The woods tested in this study were fast-growing teak woods that were prepared in untreated and treated with furfuryl alcohol (FA), glycerol maleic anhydride (GMA) and thermal. SFE values were calculated using the Rabel method. The wettability values were measured based on the contact angle between varnish liquids and wood surfaces using the sessile drop method, and the Shi and Gardner model model was used to evaluate the wettability of the varnishes on the wood surface. The bonding quality of the varnishes was measured using a cross-cut test based on ASTM 3359-17 standard. In addition, durability against subterranean termites in the field of these modified teak woods was also investigated according to ASTM D 1758-06.

Findings

The results showed that furfurylated and GMA-thermal 220°C improved the durability of teak wood against termites. The furfurylated teak wood had the roughest surface with an arithmetic average roughness (Ra) value of 15.65 µm before aging and 27.11 µm after aging. The GMA-thermal 220°C treated teak wood was the smoothest surface with Ra value of 6.44 µm before aging and 13.75 µm after aging. Untreated teak wood had the highest SFE value of 46.90 and 57.37 mJ/m2 before and after aging, respectively. The K values of untreated and treated teak wood increased owing to the aging treatment. The K values for the water-based acrylic varnish were lower than that of the solvent-based alkyd varnish. The untreated teak wood with the highest SFE produced the highest bonding quality (grades 4–5) for both acrylic and alkyd varnishes. The solvent-based alkyd varnish was more wettable and generated better bonding quality than the water-based acrylic varnish.

Originality/value

The originality of this research work is that it provides evaluation values of the durability and SFE. The SFE value can be used to quantitatively determine the wettability of paint liquids on the surface of wood and its varnish bonding quality.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2024

Bashir H. Osman

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types…

Abstract

Purpose

Recently, the repairing of reinforced concrete (RC) structures attracted great research attentions, but the research interests were mainly concentrated on common repairing types. To this end, in this paper, a repairing of pre-loaded RC beams strengthened by aramid reinforcement polymers (AFRP) is presented. Furthermore, the purpose of this paper is to study the behavior of pre-loaded RC Deep beams under sustained load. The AFRP has many advantages such as controlling stresses distribution around the openings, controlling failure modes, and enhancing the structural capacity of pre-cracked RC beams.

Design/methodology/approach

Four specimens were experimentally tested: one specimen without strengthening, which is considered as control specimen, one strengthened specimen using AFRP without pre-cracking and two specimens subjected to pre-cracking load before prior to AFRP application. Furthermore, after validation of experimental data by using ANSYS software, a parametric study was conducted to investigate the effect of pre-damage level on shear capacity of RC beams. For pre-cracked beams, loading was first applied until the cracking stage, followed by specimen repairing with epoxy injection, and then the specimens were loaded again until failure point.

Findings

The result showed that pre-damage level and AFRP strengthening have great influence on the ultimate strength and failure mode. In addition, the results obtained from experimental tests were compared with those from numerical validation with ANSYS and showed good agreement.

Originality/value

Based on ACI guidelines, an analytical equation for calculating the shear strength of strengthened RC beams with openings subjected to pre-damage was then proposed, and the calculated results were compared with those from the tests, with differences not exceeding 10%.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2023

Shubham Bansal, Lokesh Choudhary, Megha Kalra, Niragi Dave and Anil Kumar Sharma

One of the most contested and anticipated research issues is the acceptability of using recycled aggregates instead of fresh aggregates. This study aims to look at the possibility…

Abstract

Purpose

One of the most contested and anticipated research issues is the acceptability of using recycled aggregates instead of fresh aggregates. This study aims to look at the possibility of replacing fresh aggregates with 15%, 30%, 60% and 100% recycled aggregates.

Design/methodology/approach

The research is divided into two stages. The compressive, split tensile, flexural and bond strength of the various mixes were examined in the first phase using untreated recycled concrete aggregates (RCA). The second phase entails chemically treating RCA with a 10% 0.1 M sodium metasilicate solution to evaluate differences in strength, indicating the success of the treatment performed. Microstructural experiments such as scanning electron microscopy and X-ray diffraction were also conducted to evaluate the formation of interfacial transition zone (ITZ) in treated and untreated RCA specimens.

Findings

The observed findings reveal a decrease in concrete strength with increasing RCA concentration; however, when treated RCA was used, the strengths increased significantly when compared to untreated samples. The findings also include curves indicating the correlation between compressive strength and other mechanical strength parameters for an optimum mix of concrete prepared with 30% RCA replacement.

Originality/value

The study through its novel approach, demonstrates the effect of pretreatment of RCA in the absence of any standardized chemical treatment methodology and presents significant potential in minimizing reliance on fresh aggregates used in concrete, lowering building costs and promoting the use of waste materials in construction.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 January 2024

Ahmed Ashteyat, Ala Taleb Obaidat, Yasmeen Taleb Obeidat and Ahmad Bani Awwad

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon…

20

Abstract

Purpose

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) ropes.

Design/methodology/approach

In this research, nine rectangular RC beams of 250 mm × 300 mm cross-section and 1,600 mm in length were constructed and tested considering the studied parameters. These parameters include the length of the CFRP rope, the orientation of the CFRP rope, the arrangement of longitudinal and the scheme of NSM-CFRP ropes.

Findings

In comparison to control specimens, the results demonstrate a considerable improvement in the torsional response of RC beams strengthened with the CFRP rope. Additionally, specimens strengthened with 90° vertical ropes increase torsional moment capacity more efficiently than specimens strengthened with 45° inclined ropes since the stress concentration leads to premature debonding of the CFRP rope. Whereas RC beams' ability to withstand torsional moments is reduced as the distance between reinforcing CFRP ropes is increased. According to test results, adding CFRP ropes to RC beams' bottoms had a slightly positive impact on torsional response.

Originality/value

This paper fulfills an identified need to study how the using of the CFRP rope is effective in strengthening RC beam subjected to torsion moment.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 29 March 2024

Aminuddin Suhaimi, Izni Syahrizal Ibrahim and Mariyana Aida Ab Kadir

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to…

Abstract

Purpose

This review paper seeks to enhance knowledge of how pre-loading affects reinforced concrete (RC) beams under fire. It investigates key factors like deflection and load capacity to understand pre-loading's role in replicating RC beams' actual responses to fire, aiming to improve fire testing protocols and structural fire engineering design.

Design/methodology/approach

This review systematically aggregates data from existing literature on the fire response of RC beams, comparing scenarios with (WP) and without pre-loading (WOP). Through statistical tools like the two-tailed t-test and Mann–Whitney U-test, it assesses deflection extremes. The study further examines structural responses, including flexural and shear behavior, ultimate load capacity, post-yield behavior, stiffness degradation and failure modes. The approach concludes with a statistical forecast of ideal pre-load levels to elevate experimental precision and enhance fire safety standards.

Findings

The review concludes that pre-loading profoundly affects the fire response of RC beams, suggesting a 35%–65% structural capacity range for realistic simulations. The review also recommended the initial crack load as an alternative metric for determining the pre-loading impact. Crucially, it highlights that pre-loading not only influences the fire response but also significantly alters the overall structural behavior of the RC beams.

Originality/value

The review advances structural fire engineering with an in-depth analysis of pre-loading's impact on RC beams during fire exposure, establishing a validated pre-load range through thorough statistical analysis and examination of previous research. It refines experimental methodologies and structural design accuracy, ultimately bolstering fire safety protocols.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 31 October 2023

Ouided Dehas, Laidi Babouri, Yasmina Biskri and Jean-Francois Bardeau

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate…

Abstract

Purpose

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate (PET) fibers as new fillers.

Design/methodology/approach

UPR/PET fibers composites have been developed as mats by incorporating 5, 8, 13 and 18 parts per hundred of rubber (phr) of 6-, 10- and 15-mm length PET fibers from the recycling of postconsumer bottles. The mechanical and physical properties of the composites were investigated as a function of fiber content and length. A significant increase in stress at break and in ultimate stress (sr) were observed for composites reinforced with 5 and 8 phr of 15-mm length PET fibers. The Izod impact strength of UPR/mat PET fiber composites as a function of fiber rate and length showed that the 5 and 8 phr composites for the 15-mm length PET fiber have the optimal mechanical properties 13.55 and 10.50 Kj/m2, respectively. The morphological study showed that the strong adhesion resulting from the affinity of the PET fiber for the UPR matrix. The ductile fracture of materials reinforced with 5 and 8 phr is confirmed by the fiber deformation and fracture surface roughness.

Findings

This study concluded that the PET fiber enhances the properties of composites, a good correlation was observed between the results of the mechanical tests and the structural analysis revealing that for the lower concentrations, the PET fibers are well dispersed into the resin, but entanglements are evidenced when the fiber content increases.

Originality/value

It can be shown from scanning electron microscopy micrographs that the fabrication technique produced composites with good interfacial adhesion between PET fibers and UPR matrix.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 May 2023

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo…

Abstract

Purpose

This paper aims to report the effect of titanium oxide (TiO2) particles on the physical, mechanical, tribological and water resistance properties of 5% NaOH-treated bamboo fiber–reinforced composites.

Design/methodology/approach

In this research, the epoxy/bamboo/TiO2 hybrid composite filled with 0–8 Wt.% TiO2 particles has been fabricated using simple hand layup techniques, and testing of the developed composite was done in accordance with the American Society for Testing and Materials (ASTM) standard.

Findings

The results of this study indicate that the addition of TiO2 particles improved the mechanical properties of the developed epoxy/bamboo composites. Tensile properties were found to be maximum for 6 Wt.%, and impact strength was found to be maximum for 8 Wt.% TiO2 particles-filled composite. The highest flexural properties were found at a lower TiO2 fraction of 2 Wt.%. Adding TiO2 filler helped to reduce the water absorption rate. The studies related to the wear and friction behavior of the composite under dry and abrasive wear conditions reveal that TiO2 filler was beneficial in improving the wear performance of the composite.

Originality/value

This research paper attempts to include both TiO2 filler and bamboo fibers to develop a novel composite material. TiO2 micro and nanoparticles are promising filler materials; it helps to enhance the mechanical and tribological properties of the epoxy composites and in literature, there is not much work reported, where TiO2 is used as a filler material with bamboo fiber–reinforced epoxy composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Muhammed Turan Aslan, Bahattin Kanber, Hasan Demirtas and Bilal Sungur

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Abstract

Purpose

The purpose of this study is analysis of deformation and vibrations of turbine blades produced by high electrolyte pressure during electrochemical machining.

Design/methodology/approach

An experimental setup was designed, experiments were conducted and the obtained results were compared with the finite element results. The deformations were measured according to various flow rates of electrolyte. In finite element calculations, the pressure distribution created by the electrolyte on the blade surface was obtained in the ANSYS® (A finite element analysis software) Fluent software and transferred to the static structural where the deformation analysis was carried out. Three different parameters were examined, namely blade thickness, blade material and electrolyte pressure on blade disk caused by mass flow rate. The deformation results were compared with the gap distances between cathode and anode.

Findings

Large deformations were obtained at the free end of the blade and the most curved part of it. The appropriate pressure values for the electrolyte to be used in the production of blisk blades were proposed numerically. It has been determined that high pressure applications are not suitable for gap distance lower than 0.5 mm.

Originality/value

When the literature is examined, it is required that the high speed flow of the electrolyte is desired in order to remove the parts that are separated from the anode from the machining area during electrochemical machining. However, the electrolyte flowing at high speeds causes high pressure in the blisk blades, excessive deformation and vibration of the machined part, and as a result, contact of the anode with the cathode. This study provides important findings for smooth electro chemical machining at high electrolyte flows.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 50