Search results

1 – 10 of 862
Article
Publication date: 5 April 2024

Xiaohong Shi, Ziyan Wang, Runlu Zhong, Liangliang Ma, Xiangping Chen and Peng Yang

Smart contracts are written in high-level programming languages, compiled into Ethereum Virtual Machine (EVM) bytecode, deployed onto blockchain systems and called with the…

Abstract

Purpose

Smart contracts are written in high-level programming languages, compiled into Ethereum Virtual Machine (EVM) bytecode, deployed onto blockchain systems and called with the corresponding address by transactions. The deployed smart contracts are immutable, even if there are bugs or vulnerabilities. Therefore, it is critical to verify smart contracts before deployment. This paper aims to help developers effectively and efficiently locate potential defects in smart contracts.

Design/methodology/approach

GethReplayer, a smart contract testing method based on transaction replay, is proposed. It constructs a parallel transaction execution environment with two virtual machines to compare the execution results. It uses the real existing transaction data on Ethereum and the source code of the tested smart contacts as inputs, conditionally substitutes the bytecode of the tested smart contract input into the testing EVM, and then monitors the environmental information to check the correctness of the contract.

Findings

Experiments verified that the proposed method is effective in smart contract testing. Virtual environmental information has a significant effect on the success of transaction replay, which is the basis for the performance of the method. The efficiency of error locating was approximately 14 times faster with the proposed method than without. In addition, the proposed method supports gas consumption analysis.

Originality/value

This paper addresses the difficulty that developers encounter in testing smart contracts before deployment and focuses on helping develop smart contracts with as few defects as possible. GethReplayer is expected to be an alternative solution for smart contract testing and provide inspiration for further research.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 20 July 2023

Umesha Sasanthi Weerapperuma, Akila Pramodh Rathnasinghe, Himal Suranga Jayasena, Chamitha Sanjani Wijewickrama and Niraj Thurairajah

A novel facet of the construction industry's (CI) digital transformation relates to the rise of smart contracts, and the contribution of blockchain technology in this domain…

Abstract

Purpose

A novel facet of the construction industry's (CI) digital transformation relates to the rise of smart contracts, and the contribution of blockchain technology in this domain appears to be nascent but rapidly gaining traction. Although the benefits of digitalisation for technologically less enthusiastic CI are irrefutable, the adoption of smart contracts has been found to be low pertaining to industry professionals' behavioural factors stimulated by technological perception. The challenge undertook by this study, therefore, is to develop a knowledge framework for blockchain-enabled smart contract adoption in the CI.

Design/methodology/approach

From a methodological perspective, this study employed a qualitative approach that involved semi-structured interviews with ten (10) highly experienced CI practitioners involved in digital innovations for data collection. Directed content analysis was performed using NVivo 12 software, which enabled the creation of preliminary open codes. Subsequently, these open codes were grouped into similar categories to develop axial codes. Finally, the study presented final themes along with their corresponding descriptions.

Findings

Notably, research findings expanded the current body of knowledge on perceived attributes and their measurement items to determine the perception of innovation adoption in CI, where a total of nine (9) perceived attributes were associated with thirty-two (32) measurement items.

Originality/value

The measurement items were seen as having an extensive impact on the CI professionals' decision to adopt blockchain-enabled smart contracts. With ensuing implications, this study represents one of the first to present a knowledge framework exclusively customised for blockchain-enabled smart contracts, laying the groundwork for effective technological adoption by CI professionals.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 November 2023

Liupengfei Wu, Weisheng Lu and Chen Chen

This research aims to develop a blockchain smart contract–enabled framework to resolve power imbalance problems in construction payment.

Abstract

Purpose

This research aims to develop a blockchain smart contract–enabled framework to resolve power imbalance problems in construction payment.

Design/methodology/approach

This research adopts a design science research method to develop the blockchain smart contract–enabled framework. The authors then develop a prototype system. Finally, the authors evaluate its performance in solving power imbalance-induced payment problems.

Findings

The results show that the prototype system can resolve power imbalance problems in construction payment by allowing project participants to make transparent and decentralized decisions that are self-enforceable by blockchain smart contracts.

Research limitations/implications

This study provides theoretical explanations for how blockchain smart contracts can resolve power imbalances in construction payment; based on that, it proposes a novel blockchain smart contract–enabled method to rebalance the power of stakeholders in construction payment. Thus, it contributes to the body of knowledge on blockchain technology and construction payment.

Practical implications

This study moves beyond a conceptual framework and develops a practical blockchain smart contract system for resolving power imbalances in construction payment, strengthening construction project members' confidence in using blockchain technology.

Social implications

The proposed blockchain smart contract–enabled solution helps mitigate negative social impacts associated with late payment and non-payment. Furthermore, the research maximizes trust among participants in payment processes to inspire collaborative culture in the construction industry.

Originality/value

This paper introduces a novel blockchain smart contract integrated method, allowing project stakeholders to resolve power imbalance problems in construction payment through decentralized decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 October 2023

Haizhe Yu, Xiaopeng Deng and Na Zhang

The smart contract provides an opportunity to improve existing contract management practices in the construction projects by replacing traditional contracts. However, translating…

Abstract

Purpose

The smart contract provides an opportunity to improve existing contract management practices in the construction projects by replacing traditional contracts. However, translating the contracts into computer languages is considered a major challenge which has not been investigated. Thus, it is necessary to: (1) identify the obstructing clauses in real-world contracts; and (2) analyze the replacement's technical and economic feasibility. This paper aims to discuss the aforementioned objectives.

Design/methodology/approach

This study identified the flexibility clauses of traditional contracts and their corresponding functions through inductive content analysis with representative standard contracts as materials. Through a speculative analysis in accordance to design science paradigm and new institutional economics, the economic and technical feasibility of existing approaches, including enumeration method, fuzzy algorithm, rough sets theory, machine learning and artificial intelligence, to transform respective clauses (functions) into executable codes are analyzed.

Findings

The clauses of semantic flexibility and structural flexibility are identified from the contracts. The transformation of semantic flexibility is economically and/or technically infeasible with existing methods and materials. But with more data as materials and methods of rough sets or machine learning, the transformation can be feasible. The transformation of structural flexibility is technically possible however economically unacceptable.

Practical implications

Given smart contracts' inability to provide the required flexibility for construction projects, smart contracts will be more effective in less relational contracts. For construction contracts, the combination of smart contracts and traditional contracts is recommended. In the long run, with the sharing or trading of data in the industry level and the integration of machine learning or artificial intelligence reducing relevant costs, the automation of contract management can be achieved.

Originality/value

This study contributes to the understanding of the smart contract's limitations in industry scenarios and its role in construction project management.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 April 2023

Gao Shang, Low Sui Pheng and Roderick Low Zhong Xia

The construction industry has arrived at a crossroads of rapid technological progress. While it is foreseen that the advent of new construction technologies will disrupt the…

Abstract

Purpose

The construction industry has arrived at a crossroads of rapid technological progress. While it is foreseen that the advent of new construction technologies will disrupt the construction industry’s future, such disruptions often create the ideal environment for innovation. As poor payment practices continue to plague the construction industry, the advent of smart contracts has created an opportunity to rectify the inherent flaws in the mitigation of payment problems in traditional construction contracts. Given the intrinsic resistance of construction firms to such revolutionary changes, this study aims to understand the various factors influencing the adoption of smart contracts in the Singapore construction industry.

Design/methodology/approach

A mixed method was adopted involving quantifying respondents’ perceptions of the factors influencing smart contract adoption, and validation from a group of interviewees on the matter. Out of 461 registered quantity surveyor members contacted via the Singapore institute of surveyors and valuers website, 55 respondents took part in the survey. This is followed by semi-structured interviews to validate the survey results.

Findings

The findings indicate that construction firms have neither a significant knowledge of nor willingness to adopt smart contracts. A total of 29 institutional factors were also identified that significantly influence the adoption of smart contracts. The quantitative findings were further reinforced by qualitative interviews with five industry experts.

Originality/value

With recognition of and the successful formulation of the significant institutional drivers and barriers, the key findings of this study will be integral in driving the commercial adoption of smart contracts within the construction industry.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 6 February 2024

Awni Rawashdeh

This study aims to examine the role of blockchain technology (BCT) in trust in financial reporting (TFR) and the use of smart contracts (USC). It aims to ascertain the mediating…

Abstract

Purpose

This study aims to examine the role of blockchain technology (BCT) in trust in financial reporting (TFR) and the use of smart contracts (USC). It aims to ascertain the mediating role of USC in the relationship between BCT and TFR, thereby contributing to the limited empirical literature in this domain.

Design/methodology/approach

Based on a sample of the accountants’ familiarity with BCT, a structural equation model was constructed and analyzed using AMOS 24. The model proposes and tests relationships between BCT, USC and TFR.

Findings

The study highlights BCT’s significant positive influence on TFR, with USC mediating this effect. It provides empirical evidence that supports the transformative potential of BCT and USC in enhancing TFR.

Practical implications

These findings have significant implications for practitioners, regulatory bodies and policymakers. By highlighting the effectiveness of BCT and USC in fostering TFR, the study makes one aware of strategies to mitigate financial malpractices. It promotes the adoption of BCT in accounting practices.

Originality/value

This study addresses a gap in the literature by investigating the complex interplay of BCT, USC and TFR. It offers a unique perspective by exploring the mediating role of USC, thereby enhancing our understanding of the mechanisms through which BCT can foster TFR.

Details

Journal of Financial Reporting and Accounting, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-2517

Keywords

Article
Publication date: 15 February 2024

Bokolo Anthony Jnr

Presently, existing electric car sharing platforms are based on a centralized architecture which are faced with inadequate trust and pricing issues as these platforms requires an…

Abstract

Purpose

Presently, existing electric car sharing platforms are based on a centralized architecture which are faced with inadequate trust and pricing issues as these platforms requires an intermediary to maintain users’ data and handle transactions between participants. Therefore, this article aims to develop a decentralized peer-to-peer electric car sharing prototype framework that offers trustable and cost transparency.

Design/methodology/approach

This study employs a systematic review and data were collected from the literature and existing technical report documents after which content analysis is carried out to identify current problems and state-of-the-art electric car sharing. A use case scenario was then presented to preliminarily validate and show how the developed prototype framework addresses the trust-lessness in electric car sharing via distributed ledger technologies (DLTs).

Findings

Findings from this study present a use case scenario that depicts how businesses can design and implement a distributed peer-to-peer electric car sharing platforms based on IOTA technology, smart contracts and IOTA eWallet. Main findings from this study unlock the tremendous potential of DLT to foster sustainable road transportation. By employing a token-based approach this study enables electric car sharing that promotes sustainable road transportation.

Practical implications

Practically the developed decentralized prototype framework provides improved cost transparency and fairness guarantees as it is not based on a centralized price management system. The DLT based decentralized prototype framework aids to orchestrate the incentivize monetization and rewarding mechanisms among participants that share their electric cars enabling them to collaborate towards lessening CO2 emissions.

Social implications

The findings advocate that electric vehicle sharing has become an essential component of sustainable road transportation by increasing electric car utilization and decreasing the number of vehicles on the road.

Originality/value

The key novelty of the article is introducing a decentralized prototype framework to be employed to develop an electric car sharing solution without a central control or governance, which improves cost transparency. As compared to prior centralized platforms, the prototype framework employs IOTA technology smart contracts and IOTA eWallet to improve mobility related services.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 March 2024

Zhaobin Meng, Yueheng Lu and Hongyue Duan

The purpose of this paper is to study the following two issues regarding blockchain crowdsourcing. First, to design smart contracts with lower consumption to meet the needs of…

Abstract

Purpose

The purpose of this paper is to study the following two issues regarding blockchain crowdsourcing. First, to design smart contracts with lower consumption to meet the needs of blockchain crowdsourcing services and also need to design better interaction modes to further reduce the cost of blockchain crowdsourcing services. Second, to design an effective privacy protection mechanism to protect user privacy while still providing high-quality crowdsourcing services for location-sensitive multiskilled mobile space crowdsourcing scenarios and blockchain exposure issues.

Design/methodology/approach

This paper proposes a blockchain-based privacy-preserving crowdsourcing model for multiskill mobile spaces. The model in this paper uses the zero-knowledge proof method to make the requester believe that the user is within a certain location without the user providing specific location information, thereby protecting the user’s location information and other privacy. In addition, through off-chain calculation and on-chain verification methods, gas consumption is also optimized.

Findings

This study deployed the model on Ethereum for testing. This study found that the privacy protection is feasible and the gas optimization is obvious.

Originality/value

This study designed a mobile space crowdsourcing based on a zero-knowledge proof privacy protection mechanism and optimized gas consumption.

Details

International Journal of Web Information Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 1 April 2024

Zoubeir Lafhaj, Slim Rebai, Olfa Hamdi, Rateb Jabbar, Hamdi Ayech and Pascal Yim

This study aims to introduce and evaluate the COPULA framework, a construction project monitoring solution based on blockchain designed to address the inherent challenges of…

Abstract

Purpose

This study aims to introduce and evaluate the COPULA framework, a construction project monitoring solution based on blockchain designed to address the inherent challenges of construction project monitoring and management. This research aims to enhance efficiency, transparency and trust within the dynamic and collaborative environment of the construction industry by leveraging the decentralized, secure and immutable nature of blockchain technology.

Design/methodology/approach

This paper employs a comprehensive approach encompassing the formulation of the COPULA model, the development of a digital solution using the ethereum blockchain and extensive testing to assess performance in terms of execution cost, time, integrity, immutability and security. A case analysis is conducted to demonstrate the practical application and benefits of blockchain technology in real-world construction project monitoring scenarios.

Findings

The findings reveal that the COPULA framework effectively addresses critical issues such as centralization, privacy and security vulnerabilities in construction project management. It facilitates seamless data exchange among stakeholders, ensuring real-time transparency and the creation of a tamper-proof communication channel. The framework demonstrates the potential to significantly enhance project efficiency and foster trust among all parties involved.

Research limitations/implications

While the study provides promising insights into the application of blockchain technology in construction project monitoring, future research could explore the integration of COPULA with existing project management methodologies to broaden its applicability and impact. Further investigations into the solution’s scalability and adaptation to various construction project types and sizes are also suggested.

Originality/value

This research offers a comprehensive blockchain solution specifically tailored for the construction industry. Unlike prior studies focusing on theoretical aspects, this paper presents a practical, end-to-end solution encompassing model formulation, digital implementation, proof-of-concept testing and validation analysis. The COPULA framework marks a significant advancement in the digital transformation of construction project monitoring, providing a novel approach to overcoming longstanding industry challenges.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 5 March 2024

Araz Zirar, Abdul Jabbar, Eric Njoya and Hannan Amoozad Mahdiraji

This study aims to explore the key challenges and drawbacks of smart contracts (SCs) and how they impact digital resilience within small and medium enterprises (SMEs). Whilst this…

Abstract

Purpose

This study aims to explore the key challenges and drawbacks of smart contracts (SCs) and how they impact digital resilience within small and medium enterprises (SMEs). Whilst this type of technology is seen as a step forward in terms of traceability, transparency and immutability to increase digital resilience, we argue that it should be approached with trepidation.

Design/methodology/approach

In developing this paper, the authors conduct a systematic literature search using the Scopus database. Through this, we identified 931 relevant articles, of which 30 were used as the focus of this article. Thematic analysis was used as the analytical approach to develop themes and meaning from the data.

Findings

In this paper, there is an emphasis on the importance of understanding the potential risks associated with SC implementation, as well as identifying appropriate strategies for mitigating any negative impact. In our findings, we puts forward three key themes, namely legality, security and human error, which we argue are key smart contract challenges that impact SME digital resilience.

Originality/value

In this paper, we propose the notion of “centralised control in decentralised solutions”. This comes from the research highlighting SC weaknesses in digital resilience for SMEs. We argue that there is a need for standards, regulations and legislation to address these issues, advocating, ironically, a centralised approach to decentralised technology.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

1 – 10 of 862