Search results

1 – 10 of over 4000
Article
Publication date: 17 August 2021

Hongjoo Woo and Sanghee Kim

The purpose of this study is to examine the effects of brand and message framing on consumers’ evaluations and purchase intentions of smart health-care clothing. The study also…

Abstract

Purpose

The purpose of this study is to examine the effects of brand and message framing on consumers’ evaluations and purchase intentions of smart health-care clothing. The study also examines the mediating effect of consumers’ evaluations on the effects of the brand and message framing on purchase intentions.

Design/methodology/approach

Through an experimental approach, a total of 240 US consumers’ evaluation of smart health-care clothing is compared according to the existence of a well-known brand (vs. none) and message framing (technology-focused vs. fashion-focused).

Findings

The results show that consumer evaluation of smart health-care clothing is higher when the product is from a well-known brand, where consumers’ fashion consciousness and health consciousness positively influence such an evaluation as covariates. Message framing, however, did not have an influence that revealed any significant difference between technology-focused and fashion-focused messages. The consumer’s evaluation of smart health-care clothing eventually increased their purchase intentions and mediated the effects of brand on purchase intentions.

Originality/value

Smart health-care clothing refers to clothing that measures, records and manages the user’s activity and health status through conductive fibers or sensors that are woven in the clothes. Despite its benefits, smart health-care clothing is still not widely adopted among consumers, except for a few successful examples. Closing this gap, the results of this study provide implications regarding whether and how brand and message framing maximize consumers’ evaluations toward smart health-care clothing, which the developers and marketers of such products can use to increase the product’s market penetration.

Details

Journal of Product & Brand Management, vol. 31 no. 4
Type: Research Article
ISSN: 1061-0421

Keywords

Article
Publication date: 26 April 2018

Weizhen Wang, Yukari Nagai, Yuan Fang and Masami Maekawa

The purpose of this paper is to bridge the gap between human emotions and wearable technologies for interactive fashion innovation. To consider the reasons why smart clothing

1535

Abstract

Purpose

The purpose of this paper is to bridge the gap between human emotions and wearable technologies for interactive fashion innovation. To consider the reasons why smart clothing should satisfy the internet of things (IoT) technical functions and human emotional expression simultaneously, to investigate the manner in which artistic design perspectives and engineering methods combined effectively, to explore the R&D elements of future smart clothing based on the IoT technology.

Design/methodology/approach

This study combines artistic design perspectives with information-sensing engineering methods as well as kansei evaluation method. Micro-sensors and light-emitting diodes (LEDs) embedded in couples clothing prototype. The first experiment step in the design and production of prototype clothing, and do the initial emotional evaluation. The second experiment is the comparative evaluation of the prototype and other typical smart clothing.

Findings

The interactive clothing prototype was proven to correlate well with human emotional expressive patterns. The evaluation I indicated the prototype can stimulate the emotional response of the participants to achieve a higher score in the activate sensor state. Evaluation II revealed that in the process of interactive clothing design, the technical functionality should synchronize with the requirements of human emotional expression.

Originality/value

This study builds the research and development theoretical model of interactive clothing that can be integrated into daily smart clothing life design, and analyze the methods and means of blending IoT smart information-sensing technology with emotional design. By means of this experimental demonstration of human-centered interactive clothing design, the authors provide smart clothing 3.0 evolutionary roadmap and propose a new concept of internet of clothes (IoC) for further research reference.

Details

International Journal of Clothing Science and Technology, vol. 30 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 November 2012

George K. Stylios

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1110

Abstract

Examines the seventeenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 November 2010

George K. Stylios

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

Abstract

Examines the fifteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 22 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 March 2006

S. Lam Po Tang and G. K. Stylios

The paper aims to provide an overview of the area of smart textiles.

8959

Abstract

Purpose

The paper aims to provide an overview of the area of smart textiles.

Design/methodology/approach

The paper describes and discusses new and developing materials and technologies used in the textile industries.

Findings

Significant progress has been achieved in the area of technical textiles. Fibres, yarns, fabrics and other structures with added‐value functionality have been successfully developed for technical and/or high performance end‐uses. The basic building blocks are already in place in the field of smart textiles and clothing.

Practical implications

As progress in science and engineering research advances, and as the gap between designers and scientists narrows, the area of smart clothing is likely to keep on expanding for the foreseeable future. Growth is predicted to occur in two distinct directions: performance‐driven smart clothing and fashion‐driven smart clothing. There are challenges that have to be addressed.

Originality/value

The paper provides information of value to those interested in the future directions of the textile industry.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 April 2022

Shuyang Li, Shu Jiang, Miao Tian, Yun Su and Jun Li

The purpose of this paper is to gain an in-depth understanding of the research progress, hotspots and future trends in the field of functional clothing.

Abstract

Purpose

The purpose of this paper is to gain an in-depth understanding of the research progress, hotspots and future trends in the field of functional clothing.

Design/methodology/approach

The records of 4,153 pieces of literature related to functional clothing were retrieved from Web of Science by using a comprehensive retrieval strategy. A piece of software, CiteSpace was used as a tool to visualize the results of specific terms, such as author, institution and keyword. By analyzing the knowledge maps with several indicators, the intellectual basis and research fronts for the functional clothing domain could then be demonstrated.

Findings

The result indicated that functional clothing was a popular research field, with approximately 500 papers published worldwide in 2020. Its main research area was material science and involved public environmental and occupational health, engineering, etc. showing the characteristic of multi-interdisciplinary. Textile Research Journal and International Journal of Clothing Science and Technology were the top two journals in this field. The USA, China, Australia, England and Germany have been active and frequently cooperating with each other. Donghua University, the Hong Kong Polytechnic University and NASA, with the largest number of publications, were identified as the main research drivers. According to the co-citation analysis, thermal stress, nanogenerator and electrospinning were the topics of most cited articles during the past 20 years.

Practical implications

The findings identified smart clothing and protective clothing to be the research frontiers in the field of functional clothing, which deserved further study in the future.

Originality/value

The outcomes offered an overview of the research status and future trends of the functional clothing field. It could not only provide scholars with convenience in identifying research hotspots and building potential cooperation in the follow-up research, but also assist beginners in searching core scholars and literature of great significance.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 May 2023

Jurgita Domskiene, Modesta Mitkute and Valdas Grigaliunas

This paper aims to present investigations of the influence of sewing and adhesive bonding technology on the aesthetic, mechanical and conductive properties of the e-textile…

Abstract

Purpose

This paper aims to present investigations of the influence of sewing and adhesive bonding technology on the aesthetic, mechanical and conductive properties of the e-textile package. Commercially available conductive textiles are tested for the production of e-textile package by most common cut-and-sewn clothing production technologies.

Design/methodology/approach

Sewing, adhesive bonding and seam sealing technologies used to obtain e-textile packages with woven and knitted conductive textiles. Produced e-textile packages described in terms of thickness, bending rigidity and general appearance. Exploitation properties of prepared samples tested by cycle tensile experiment and discussed on the basis of variation of linear electrical resistance property.

Findings

Research has shown that a reliable e-textile package can be obtained by applying cut-and-sew technology for conductive tracks of silver coated woven and knitted material. Seam sealing by thermoplastic polymer layer has an impact on the electrical and deformation properties of the samples. To create attractive smart clothing design, the appropriate joining method and its technological parameters must be chosen to ensure the durability and safety of e-textile packages.

Originality/value

The findings of the research are of substantial value for the production of e-textiles by cut-and-sewn technologies. The required shape of the conductive textile element for various applications can be cut and joined to the garment parts using traditional sewing or adhesive bonding techniques.

Details

International Journal of Clothing Science and Technology, vol. 35 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 11 March 2021

Miao-Tzu Lin

Flexible hydrogenated amorphous silicon (a-Si:H) solar cells have many advantages, including lower weight, good flexibility and light sensitivity. Moreover, a-Si:H solar cells can…

Abstract

Purpose

Flexible hydrogenated amorphous silicon (a-Si:H) solar cells have many advantages, including lower weight, good flexibility and light sensitivity. Moreover, a-Si:H solar cells can be used as sensors, as indoor light sources and can also generate electricity. These solar cells are suitable for the design of portable systems and curved materials. The purpose of this study was to integrate flexible a-Si:H solar cells and wearable technology and to apply the dual functions of photovoltaics and photo sensors to smart clothing and eyewear.

Design/methodology/approach

The integration of flexible a-Si:H solar cells and tri-colour light-emitting diodes (LEDs) was used to develop smart auto-flashing clothing. In addition, we combined flexible a-Si:H solar cells and twisted nematic (TN) liquid crystal (LC) cells to design smart self-activation eyewear.

Findings

The maximum power resistance value of flexible a-Si:H solar cells was used to deduce the equation of solar cell voltage value generated by different percentages of SUN (100% SUN means 100 mW/cm2). A solar cell was used as a photo sensor that connects a resistor in a series to the Arduino to detect the voltage value, and then different percentages of SUN are calculated from the equation. Applying the deduced equation to the smart phone APP and Arduino code, we developed a human–machine interface (HMI) to facilitate user operation.

Originality/value

In this study, the flexible a-Si:H solar cell performs the function of not only photovoltaic power generation but also that of a photo sensor. The smart auto-flashing clothing is suitable for traffic guides, joggers and people engaging in other night activities. This smart self-activating eyewear can adjust to light and protect the eyes.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 February 2014

Minyoung Suh, Katherine E. Carroll, Edward Grant and William Oxenham

This research investigated the feasibility of using an inductively coupled antenna as the basis of applying a systems approach to smart clothing. In order to simulate real-life…

Abstract

Purpose

This research investigated the feasibility of using an inductively coupled antenna as the basis of applying a systems approach to smart clothing. In order to simulate real-life situations, the impact of the distortions and relative displacement of different fabric layers (with affixed antennas) on the signal quality was assessed. The paper aims to discuss these issues.

Design/methodology/approach

A spiral antenna was printed on different fabric substrates. Obstructive conditions of the inductively coupled fabric layers were investigated to find out how much influence these conditions had on transmission performance. Reflected signals and transmitted signals were observed, while fabric antennas were subjected to displacement (distance and dislocation) or deformation (stretching and bending). The threshold of physical obstacles was estimated based on statistical analyses.

Findings

The limits of physical conditions that enable proper wireless transmission were estimated up to ∼2 cm for both distance and dislocation, and ∼0.24 K for bending deformation. The antenna performance remained within an acceptable level of 20 percent transmission up to 10 percent fabric stretch. Based on well-established performance metrics used in clothing environment on the body, which employs 2-5 cm of ease, the results imply that the inductively coupled antennas may be suitable for use in smart clothing.

Originality/value

This research demonstrates that the use of inductively coupled antennas on multiple clothing layers could offer the basis of a new “wireless” system approach to smart clothing. This would not only result in performance benefits, but would also significantly improve the aesthetics of smart clothing which should result in new markets for such products.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 April 2019

Yan Hong, Xuechun Cao, Yan Chen, Zhijuan Pan, Yu Chen and Xianyi Zeng

The purpose of this paper is to investigate physiological indices related to comfort and health condition, based on which corresponding electronic equipment are selected and…

Abstract

Purpose

The purpose of this paper is to investigate physiological indices related to comfort and health condition, based on which corresponding electronic equipment are selected and applied. A wearable monitoring system using sensor and liquid crystal display (LCD) techniques are then designed. Sensors are used to collect and transmit recording required signals from the wearer. A microcomputer with the type of AT89C52 is used to record and analyze the collected data. LCD is applied to display the health and comfort condition of the wearer.

Design/methodology/approach

A novel wearable monitoring system for the measurement of physiological indices and clothing microclimate is proposed in this study in order to monitoring both health and comfort condition of the wearer.

Findings

The proposed system provides reference for the application of sensor and display technologies in the field of smart clothing, which can be further applied to infant and child care, health care, home entertainment, military and industry.

Originality/value

This paper, first, investigated a framework of a wearable monitoring system considering both comfort and health condition and summarized the related physiological indices. The requirements of both comfort and health condition monitoring are analyzed to select appropriate electronic elements.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 4000