Search results

1 – 10 of over 1000
Article
Publication date: 1 April 2024

Frank Ato Ghansah

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the…

Abstract

Purpose

Despite the opportunities of digital twins (DTs) for smart buildings, limited research has been conducted regarding the facility management stage, and this is explained by the high complexity of accurately representing and modelling the physics behind the DTs process. This study thus organises and consolidates the fragmented literature on DTs implementation for smart buildings at the facility management stage by exploring the enablers, applications and challenges and examining the interrelationships amongst them.

Design/methodology/approach

A systematic literature review approach is adopted to analyse and synthesise the existing literature relating to the subject topic.

Findings

The study revealed six main categories of enablers of DTs for smart building at the facility management stage, namely perception technologies, network technologies, storage technologies, application technologies, knowledge-building and design processes. Three substantial categories of DTs application for smart buildings were revealed at the facility management stage: efficient operation and service monitoring, efficient building energy management and effective smart building maintenance. Subsequently, the top four major challenges were identified as being “lack of a systematic and comprehensive reference model”, “real-time data integration”, “the complexity and uncertainty nature of real-time data” and “real-time data visualisation”. An integrative framework is finally proposed by examining the interactive relationship amongst the enablers, the applications and the challenges.

Practical implications

The findings could guide facility managers/engineers to fairly understand the enablers, applications and challenges when DTs are being implemented to improve smart building performance and achieve user satisfaction at the facility management stage.

Originality/value

This study contributes to the knowledge body on DTs by extending the scope of the existing studies to identify the enablers and applications of DTs for smart buildings at the facility management stage and the specific challenges.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 27 September 2023

Huiying (Cynthia) Hou, Daniel C.W. Ho and Yung Yau

Facilities management (FM) activities affect citizens’ health and safety, long-term urban environmental sustainability and the relationships between the built and natural…

Abstract

Purpose

Facilities management (FM) activities affect citizens’ health and safety, long-term urban environmental sustainability and the relationships between the built and natural environments of cities. This study aims to comprehend the status of smart FM tools application, how they are used to improve the delivery of FM services and the barriers to their implementation.

Design/methodology/approach

To investigate the current smart solutions that leverage the quality of FM service, a case study based on the FM practice in Hong Kong was carried out. The case study was conducted in two phases of data acquisition based on a qualitative research methodology. After conducting in-depth interviews to determine the application of smart FM tools in different types of properties and to identify the initiatives and barriers to smart FM tool application, three workshops were conducted to validate the findings and further investigate the influence of FM professionals on smart FM tools application in Hong Kong.

Findings

The findings of the case study revealed, firstly, that four types of smart FM tools – user-centric, safety and hygiene, maintenance and sustainability-oriented – are used to assist the delivery of FM services. Secondly, smart FM tools are shown to be useful in assisting FM activities. Thirdly, the existing barriers to smart FM tool application manifest differently in shopping malls, office buildings and residential buildings. Fourthly, smart FM tools are used to address the four attributes of user needs: comfort, health and wellbeing, convenience and information to occupants.

Originality/value

The value of this study lies in its focus on the industry level (FM industry) and the application process of smart FM tools in different types of property, revealing the benefits, initiatives and barriers to their future application. This study provides a comprehensive picture of the current status and elaborates the barriers to smart FM tool application, which will help FM practitioners to make strategic decisions on selecting and developing smart FM tools. Also, this study will facilitate smart FM tool application policy development.

Details

Facilities , vol. 42 no. 1/2
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 2 April 2024

Jorge Furtado Falorca

The purpose of this paper is to report on the results of a study carried out to identify and analyse which potential subject areas may have impact on developments in the field of…

Abstract

Purpose

The purpose of this paper is to report on the results of a study carried out to identify and analyse which potential subject areas may have impact on developments in the field of building maintenance (BM). That is, it is intended to contribute to the integration of new approaches so that building maintenance management (BMM) becomes as automated, digital and intelligent or smartness as possible in the near future.

Design/methodology/approach

The research approach has resulted in a theory that is essentially based on a qualitative design. The route followed was a literature review, involving the collection, analysis and interpretation of carefully selected information, mostly from recently published records. The data assembled and the empirical experience itself made it possible to present a comprehensive viewpoint and some future outlooks.

Findings

Five thematic areas considered as potentially impactful for BM developments have been highlighted, analysed and generically labelled as thematic base words, which are monitoring, automation, digitalisation, intelligence and smart. It is believed that these may be aspects that will lay the groundwork for a much more advanced and integrated agenda, featured by a high-tech vision.

Originality/value

This is thought to be a different way of looking at the problem, as it addresses five current issues together. Trendy technological aspects are quite innovative and advantageous for BMM, providing opportunities not yet widely explored and boosting the paradigm shift.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 23 April 2024

Fahim Ullah, Oluwole Olatunji and Siddra Qayyum

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning…

Abstract

Purpose

Contemporary technological disruptions are espoused as though they stimulate sustainable growth in the built environment through the Green Internet of Things (G-IoT). Learning from discipline-specific experiences, this paper articulates recent advancements in the knowledge and concepts of G-IoT in relation to the construction and smart city sectors. It provides a scoping review for G-IoT as an overlooked dimension. Attention was paid to modern circularity, cleaner production and sustainability as key benefits of G-IoT adoption in line with the United Nations’ Sustainable Development Goals (UN-SDGs). In addition, this study also investigates the current application and adoption strategies of G-IoT.

Design/methodology/approach

This study uses the Preferred Reporting Items for Systematic and Meta-Analyses (PRISMA) review approach. Resources are drawn from Scopus and Web of Science repositories using apt search strings that reflect applications of G-IoT in the built environment in relation to construction management, urban planning, societies and infrastructure. Thematic analysis was used to analyze pertinent themes in the retrieved articles.

Findings

G-IoT is an overlooked dimension in construction and smart cities so far. Thirty-three scholarly articles were reviewed from a total of 82 articles retrieved, from which five themes were identified: G-IoT in buildings, computing, sustainability, waste management and tracking and monitoring. Among other applications, findings show that G-IoT is prominent in smart urban services, healthcare, traffic management, green computing, environmental protection, site safety and waste management. Applicable strategies to hasten adoption include raising awareness, financial incentives, dedicated work approaches, G-IoT technologies and purposeful capacity building among stakeholders. The future of G-IoT in construction and smart city research is in smart drones, building information modeling, digital twins, 3D printing, green computing, robotics and policies that incentivize adoption.

Originality/value

This study adds to the normative literature on envisioning potential strategies for adoption and the future of G-IoT in construction and smart cities as an overlooked dimension. No previous study to date has reviewed pertinent literature in this area, intending to investigate the current applications, adoption strategies and future direction of G-IoT in construction and smart cities. Researchers can expand on the current study by exploring the identified G-IoT applications and adoption strategies in detail, and practitioners can develop implementation policies, regulations and guidelines for holistic G-IoT adoption.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 29 December 2023

Kiia Aurora Einola, Laura Remes and Kenneth Dooley

This study aims to explore an emerging collection of smart building technologies, known as smart workplace solutions (SWS), in the context of facilities management (FM).

Abstract

Purpose

This study aims to explore an emerging collection of smart building technologies, known as smart workplace solutions (SWS), in the context of facilities management (FM).

Design/methodology/approach

This study is based on semi-structured interviews with facility managers in Finland, Norway and Sweden who have deployed SWSs in their organizations. SWS features, based on empirical data from a previous study, were also used to further analyse the interviews.

Findings

It analyses the benefits that SWSs bring from the facility management point of view. It is clear that the impetus for change and for deploying SWS in the context of FM is primarily driven by cost savings related to reductions in office space.

Research limitations/implications

This research has been conducted with a focus on office buildings only. However, other building types can learn from the benefits that facility managers receive in the area of user-centred smart buildings.

Practical implications

SWSs are often seen as employee experience solutions that are only related to “soft” elements such as collaboration, innovation and learning. Understanding the FM business case can help make a more practical case for their deployment.

Originality/value

SWSs are an emerging area, and this study has collected data from facility managers who use them daily.

Details

Facilities , vol. 42 no. 15/16
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 7 November 2023

Kamal Pandey and Bhaskar Basu

In the context of a developing country, Indian buildings need further research to channelize energy needs optimally to reduce energy wastage, thereby reducing carbon emissions…

Abstract

Purpose

In the context of a developing country, Indian buildings need further research to channelize energy needs optimally to reduce energy wastage, thereby reducing carbon emissions. Also, reduction in smart devices’ costs with sequential advancements in Information and Communication Technology have resulted in an environment where model predictive control (MPC) strategies can be easily implemented. This study aims to propose certain preemptive measures to minimize the energy costs, while ensuring the thermal comfort for occupants, resulting in better greener solutions for building structures.

Design/methodology/approach

A simulation-based multi-input multi-output MPC strategy has been proposed. A dual objective function involving optimized energy consumption with acceptable thermal comfort has been achieved through simultaneous control of indoor temperature, humidity and illumination using various control variables. A regression-based lighting model and seasonal auto-regressive moving average with exogenous inputs (SARMAX) based temperature and humidity models have been chosen as predictor models along with four different control levels incorporated.

Findings

The mathematical approach in this study maintains an optimum tradeoff between energy cost savings and satisfactory occupants’ comfort levels. The proposed control mechanism establishes the relationships of output variables with respect to control and disturbance variables. The SARMAX and regression-based predictor models are found to be the best fit models in terms of accuracy, stability and superior performance. By adopting the proposed methodology, significant energy savings can be accomplished during certain hours of the day.

Research limitations/implications

This study has been done on a specific corporate entity and future analysis can be done on other corporate or residential buildings and in other geographical settings within India. Inclusion of sensitivity analysis and non-linear predictor models is another area of future scope.

Originality/value

This study presents a dynamic MPC strategy, using five disturbance variables which further improves the overall performance and accuracy. In contrast to previous studies on MPC, SARMAX model has been used in this study, which is a novel contribution to the theoretical literature. Four levels of control zones: pre-cooling, strict, mild and loose zones have been used in the calculations to keep the Predictive Mean Vote index within acceptable threshold limits.

Article
Publication date: 7 December 2023

Tiep Nguyen, Leonie Hallo and Indra Gunawan

The purpose of this paper is to rank critical risks and determine major categories of risks to be considered by public–private partnerships (PPPs) investors when investing in…

Abstract

Purpose

The purpose of this paper is to rank critical risks and determine major categories of risks to be considered by public–private partnerships (PPPs) investors when investing in “smart” transportation infrastructure. Such investment is sorely needed in many mega cities around the world currently suffering from serious impacts of traffic congestion, pollution and lack of usability of transport systems.

Design/methodology/approach

The study used literature review focused upon smart transportation infrastructure projects financed by PPP arrangements to create a questionnaire which was refined by subject matter experts and then completed by 126 experienced respondents. Exploratory factor analysis was used to create major categories emerging from the collected data. Interviews with ten experts were used to validate the findings.

Findings

The most highly major ranked risks shared by these participants were lack of expertise in complex project implementation, political interference, lack of PPP project data and lack of a collaboration mechanism between government and private sectors. Factor analysis showed that in terms of risk likelihood, stakeholder engagement, implementation process issues, the natural environment, data-sharing and technology complexity emerged. In terms of risk impact, major factors were stakeholder engagement, trust versus resistance issues, the natural environment and factors concerning uncertainty.

Originality/value

This paper addresses a somewhat unexplored area, the risks involved in investing in PPP smart transportation infrastructure. Such infrastructure projects are embedded in their environments, and approaches using a complexity lens can emerge overriding risk concerns for investors when undertaking such projects.

Details

Built Environment Project and Asset Management, vol. 14 no. 1
Type: Research Article
ISSN: 2044-124X

Keywords

Open Access
Article
Publication date: 1 September 2023

Alireza Moghayedi, Kathy Michell, Dylan Hübner, Karen Le Jeune and Mark Massyn

This study investigates the barriers and drivers of using green methods and technologies (GMTs) in supportive educational buildings (SEBs) in South Africa, and assesses their…

1219

Abstract

Purpose

This study investigates the barriers and drivers of using green methods and technologies (GMTs) in supportive educational buildings (SEBs) in South Africa, and assesses their impact on the circular economy (CE) in achieving net-zero carbon goals. While there has been extensive literature on green building technologies, there is limited research on the barriers and drivers of using GMT in SEBs, as well as their impact on the circular economy (CE) in achieving net-zero carbon goals.

Design/methodology/approach

This study adopts an interpretivist approach with an ontological basis, using an overarching case study of a SEB at the University of Cape Town (UCT). Semistructured interviews were conducted with executive UCT management, and a field survey of a UCT supportive education building was performed.

Findings

At UCT, multiple GMTs have been installed across various buildings to enhance monitoring and management of water and energy consumption. Moreover, initiatives to positively influence student behavior, such as water and energy-saving campaigns around UCT premises, have been introduced. The findings further indicate that UCT has recently emphasized the implementation of GMTs, resulting in improved resource efficiency, CE practices and progress toward achieving net-zero carbon targets for supportive education buildings and the university as a whole.

Originality/value

This research highlights the positive impact of GMTs on a SEB’s CE and net-zero carbon operations. As a result, facility managers should consider incorporating GMTs when planning the development or refurbishment of SEBs.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 27 January 2023

Davit Marikyan, Savvas Papagiannidis, Omer F. Rana and Rajiv Ranjan

The coronavirus disease 2019 (COVID-19) pandemic has had a big impact on organisations globally, leaving organisations with no choice but to adapt to the new reality of remote…

1240

Abstract

Purpose

The coronavirus disease 2019 (COVID-19) pandemic has had a big impact on organisations globally, leaving organisations with no choice but to adapt to the new reality of remote work to ensure business continuity. Such an unexpected reality created the conditions for testing new applications of smart home technology whilst working from home. Given the potential implications of such applications to improve the working environment, and a lack of research on that front, this paper pursued two objectives. First, the paper explored the impact of smart home applications by examining the factors that could contribute to perceived productivity and well-being whilst working from home. Second, the study investigated the role of productivity and well-being in motivating the intention of remote workers to use smart home technologies in a home-work environment in the future.

Design/methodology/approach

The study adopted a cross-sectional research design. For data collection, 528 smart home users working from home during the pandemic were recruited. Collected data were analysed using a structural equation modelling approach.

Findings

The results of the research confirmed that perceived productivity is dependent on service relevance, perceived usefulness, innovativeness, hedonic beliefs and control over environmental conditions. Perceived well-being correlates with task-technology fit, service relevance, perceived usefulness, perceived ease of use, attitude to smart homes, innovativeness, hedonic beliefs and control over environmental conditions. Intention to work from a smart home-office in the future is dependent on perceived well-being.

Originality/value

The findings of the research contribute to the organisational and smart home literature, by providing missing evidence about the implications of the application of smart home technologies for employees' perceived productivity and well-being. The paper considers the conditions that facilitate better outcomes during remote work and could potentially be used to improve the work environment in offices after the pandemic. Also, the findings inform smart home developers about the features of technology which could improve the developers' application in contexts beyond home settings.

Details

Internet Research, vol. 34 no. 2
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 27 October 2023

Pulkit Tiwari

The objective of this research work is to design a data-based solution for administering traffic organization in a smart city by using the machine learning algorithm.

Abstract

Purpose

The objective of this research work is to design a data-based solution for administering traffic organization in a smart city by using the machine learning algorithm.

Design/methodology/approach

A machine learning framework for managing traffic infrastructure and air pollution in urban centers relies on a predictive analytics model. The model makes use of transportation data to predict traffic patterns based on the information gathered from numerous sources within the city. It can be promoted for strategic planning determination. The data features volume and calendar variables, including hours of the day, week and month. These variables are leveraged to identify time series-based seasonal patterns in the data. To achieve accurate traffic volume forecasting, the long short-term memory (LSTM) method is recommended.

Findings

The study has produced a model that is appropriate for the transportation sector in the city and other innovative urban applications. The findings indicate that the implementation of smart transportation systems enhances transportation and has a positive impact on air quality. The study's results are explored and connected to practical applications in the areas of air pollution control and smart transportation.

Originality/value

The present paper has created the machine learning framework for the transportation sector of smart cities that achieves a reasonable level of accuracy. Additionally, the paper examines the effects of smart transportation on both the environment and supply chain.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

1 – 10 of over 1000