Search results

1 – 1 of 1
Open Access
Article
Publication date: 15 September 2023

Marissa Condon

The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to…

Abstract

Purpose

The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to use a very small time step when high frequencies are present. High-frequency signals abound in communication circuits when modulated signals are involved.

Design/methodology/approach

The method involves an asymptotic expansion of the solution and each term in the expansion can be determined either from NDDE without oscillatory inputs or recursive equations. Such an approach leads to an efficient algorithm with a performance that improves as the input frequency increases.

Findings

An example shall indicate the salient features of the method. Its improved performance shall be shown when the input frequency increases. The example is chosen as it is similar to that in literature concerned with partial element equivalent circuit (PEEC) circuits (Bellen et al., 1999). Its structure shall also be shown to enable insights into the behaviour of the system governed by the differential equation.

Originality/value

The method is novel in its application to NDDE as arises in engineering applications such as those involving PEEC circuits. In addition, the focus of the method is on a technique suitable for high-frequency signals.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Access

Only Open Access

Year

Content type

1 – 1 of 1