Search results

1 – 10 of over 4000
Article
Publication date: 5 December 2019

Mariusz Deja and Dawid Zielinski

The purpose of this study is to evaluate the geometric quality of small diameter holes in parts printed by direct metal laser sintering (DMLS) technology. An in-process optical…

Abstract

Purpose

The purpose of this study is to evaluate the geometric quality of small diameter holes in parts printed by direct metal laser sintering (DMLS) technology. An in-process optical inspection method is proposed and assessed during a pilot study. The influence of the theoretical hole diameter assumed in a computer-aided design (CAD) system and the sample thickness (hole length) on the hole clearance was analyzed.

Design/methodology/approach

The samples are made of two different materials: EOS MaragingSteel MS1 and aluminium alloy EOS Aluminium consisted of straight through holes of different diameters and lengths. Dimensional and shape accuracy of the holes were determined with the use of the image processing software and the computer analysis of two-dimensional (2-D) images. The definition of the equivalent hole diameter was proposed to calculate the hole clearance. Feret’s diameters were determined for the evaluation of the shape accuracy.

Findings

The dependency between the equivalent hole diameter and the theoretical diameter was approximated by the linear function for a specific sample thickness. Additionally, a general empirical model for determining the hole clearance was developed, allowing for calculating the equivalent hole diameter as a function of a sample thickness and a theoretical hole diameter.

Practical implications

Developed functions can be used by designers for a proper assignment of a hole diameter to achieve the required patency. The relevant procedures and macros based on proposed empirical models can be embedded in CAD systems to support the designing process.

Originality/value

The analysis of the geometric quality of the holes in parts printed by DMLS was based on the computer analysis of 2-D images. The proposed method of assessing the shape accuracy of straight through holes is relatively cheap, is widely available and can be applied to the features of other shapes produced by three-dimensional printing.

Details

Rapid Prototyping Journal, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 29 April 2014

Linfang Wang, Lijuan Zheng, Cheng yong Wang, Shan Li, Yuexian Song, Lunqiang Zhang and Peng Sun

Compared with the traditional printed circuit board (PCB) drilling process, the technology of drilling IC substrate is facing more problems, such as much smaller hole diameter

Abstract

Purpose

Compared with the traditional printed circuit board (PCB) drilling process, the technology of drilling IC substrate is facing more problems, such as much smaller hole diameter, more intensive hole space, thinner sheet and more complicated materials are drilled in process. Moreover, the base material of IC substrate is different from traditional PCB, more kinds of fillers added in IC substrate which make the drill worn seriously during drilling process. Micro-drills wear and micro holes quality are the most important questions when drilling IC substrate so far. Wear morphology of micro-drill, holes wall roughness and hole location accuracy are researched in this paper. The influence factors of micro-drills wear and micro holes quality are also studied in this drilling process. The paper aims to discuss these issues.

Design/methodology/approach

Two drills with same structure and different diameter are used to drill different stacks of IC substrate and drill different holes in this paper. There are four experiments made and the drilling parameters including spindle speed (n), feed rate (vf) and retraction speed (vr) are recommended by drill manufacturing company. Wear morphologies of drill are observed, holes wall roughness (Rmax) and holes location accuracy (Cpk) are measured in this paper. Analyzing the main factors influence on drill wear, holes wall roughness and holes location accuracy through these experiments.

Findings

The micro-drills of IC substrate wear more severely compared with other material of PCB through the experimental results in this paper. Drill diameter has influence on micro-drill wear when drilling IC substrate, the smaller of drill is, the more severely of micro-drill wears. Drill diameter affect the holes wall roughness too, the holes wall roughness of larger holes is better than smaller one in a certain range. The drilled holes number also has influence on micro-drills wear, holes wall roughness and holes location accuracy. The more drilled holes, the seriously of micro-drills wear, and the worn drill would destroy the hole quality. Therefore, the more drilled holes lead the bad holes wall roughness and holes location accuracy in this paper. In addition, stacks of IC substrate affect much on the holes location accuracy, the more stacks, the worse holes location accuracy.

Originality/value

Chinese Mainland is obviously lagging behind in technology and manufacturer of IC substrate which is incompatible with the nation circumstances. There is few research of drilling IC substrate in China and research data are lacking so far. It is most necessary to improve the technology level of drilling IC substrate in China. In order to reduce the wear of micro-drills and improve the quality of micro-holes, many experimental tests about drilling IC substrate are researched in this paper.

Details

Circuit World, vol. 40 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 April 1984

M.N. Watson

Many small holes need to be drilled in printed circuit boards to achieve a high packing density of circuit components. Even with NC control, conventional mechanical techniques are…

Abstract

Many small holes need to be drilled in printed circuit boards to achieve a high packing density of circuit components. Even with NC control, conventional mechanical techniques are relatively slow and holes smaller than 035 mm diameter are difficult to achieve in production. Laser drilling has been suggested as a potentially fast technique capable of drilling small holes, so trials have been conducted on thin, flexible kapton board, and on 08 mm and 16 mm thick epoxide woven glass fabric board with 12 and 36 micron thick copper cladding. Using a 600 W CO2 laser, the proposed technique was to pre‐etch holes in the copper which would then act as a mask to the beam, so drilling only where etched holes existed. This technique was feasible on the flexible board, but not on the thicker boards because of damage to the copper. Using a pulsed Nd‐YAG laser to drill through both copper and laminate gave good results, but more work is necessary to eliminate occasional delamination of the copper around the hole. Through‐hole plating of the drilled holes appeared to present no special problems.

Details

Circuit World, vol. 11 no. 1
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 February 1987

R. Menzel

For the drilling of polyimide multilayers with acrylic adhesives, more care must be taken than for epoxy glass material. Due to the different mechanical properties in the…

Abstract

For the drilling of polyimide multilayers with acrylic adhesives, more care must be taken than for epoxy glass material. Due to the different mechanical properties in the multilayer ‘sandwich’ of the polyimide and the acrylic adhesive layers, the drilling parameters require a higher level of control. To avoid defects in the hole, such as nail heading of the polyimide or an uncontrolled ‘rip‐out’ of the acrylic adhesive, the relation between the cutting speed of the drill and the feed needs to be adjusted for each drill diameter. The following guidelines are valid: Wider drill diameters require a lower rotational speed and a lower feed to avoid deformation of the polyimide in the hole. Smaller drill diameters need high rotational speeds and a higher feed to minimise smear. In general, the drilling performance of wider drills is better than that of smaller drills. In all cases, it was impossible to prevent smear of the acrylic adhesive in the multilayer holes. The only reliable method for removing acrylic smear is by plasma etching. The minimum etch‐back required for acrylic adhesive was found to be ≥6 µm, which would be equivalent to an etch‐back of only 2 µm of the polyimide film. To achieve the etch‐back rate, the time in the plasma chamber should be between 20 and 30 minutes at 90–110°C. After the etch‐back, a high pressure water rinse is needed to remove some residues in the hole prior to through‐plating.

Details

Circuit World, vol. 13 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 5 May 2015

Xiong Liang, Bing Li, Lianyu Fu, Xiaoyu Wu, Hongyan Shi, Taijiang Peng and Bin Xu

This paper aims to present the main factors affecting the mechanical drilling of the printed circuit board (PCB for short) micro-holes and method of micro-ultrasonic powder…

1050

Abstract

Purpose

This paper aims to present the main factors affecting the mechanical drilling of the printed circuit board (PCB for short) micro-holes and method of micro-ultrasonic powder molding (micro-UPM for short) by utilizing PCB micro-hole array.

Design/methodology/approach

To optimize the drilling process, the paper proposes the on-line monitoring methods for the drilling process including drilling force, drilling temperature, high-speed photography and vibration signals. Taking 0.10 and 0.15 mm micro-drilling as examples, the paper analyzes the drilling process of ultra-small micro-holes. Finally, by taking the PCBs with 0.10 and 0.15 mm micro-hole arrays as the micro-cavity inserts, utilizing ultra-high-molecule weight polyethylene powder with the average particle size of about 150 μm as raw material, two sizes of micro-cylinder array polymer parts are fabricated through micro-UPM process.

Findings

PCB micro-cavity inserts with micro-hole arrays fabricated by mechanical drilling has the advantages of low costs, high efficiency and good consistency. Taking 0.10 and 0.15 mm micro-drilling as examples, it is found that the both measured apertures are about 10.0 μm more than the diameter of the micro-drill bits on average. The average diameter of the micro-cylinders by micro-UPM process is smaller than that of the micro-hole with the same specification, while the value of the roughness of the cylinder surface is more than that of the hole-wall surface with the same specification.

Originality/value

This paper describes the challenges and the developments of mechanical drilling and by using PCB micro-cavity inserts with micro-hole arrays fabricated by mechanical drilling, two different micro-cylinder array polymer parts are successfully made and thus the application area of PCB micro-drilling is broadened.

Details

Circuit World, vol. 41 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 1962

J.L. Livesey, J.D. Jackson and C.J. Southern

Experiments have been carried out to determine the magnitude of static hole errors for holes of various diameters and depths. A new approach is tried to the problem of…

Abstract

Experiments have been carried out to determine the magnitude of static hole errors for holes of various diameters and depths. A new approach is tried to the problem of extrapolation to zero hole size for the purpose of obtaining a true value of static pressure. The results obtained are in broad agreement with previous experimental data and confirm the fact that a positive error is obtained for deep static holes, whereas shallow holes with large cavities behind them can involve negative errors. Since the effects of hole size and hole depth are apparently opposite, the use of fairly shallow holes can result in pressure measurements which are very close to the true value, provided that in drilling the holes no distortion of the duct wall is produced and all burrs are carefully removed. This point may be of interest in some engineering applications where the material used in the construction of the duct or model is thin.

Details

Aircraft Engineering and Aerospace Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 January 1988

R. Kreisel

The design of PCBs is highly influenced by the components being mounted on them. Holes with diameters as small as, for example, 0·008 in. and aspect ratios of 10:1 will become…

Abstract

The design of PCBs is highly influenced by the components being mounted on them. Holes with diameters as small as, for example, 0·008 in. and aspect ratios of 10:1 will become standard. More complicated PCBs of higher value need enhanced security and uniformity in processing. An answer to these requirements is provided by UNIPLATE, a horizontal processor developed by Schering Electroplating. To secure hole wall treatment, this system uses floodbars for forcing the solution through the holes. Together with chemicals, tuned to this very application, very high quality PCBs can be accomplished.

Details

Circuit World, vol. 14 no. 2
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 March 2001

Yasuyuki Kimura

A developmental project has been initiated to create a new type of glass fabric, whose fibers are to be uniformly distributed in the laminate so as to comply with the requirement…

Abstract

A developmental project has been initiated to create a new type of glass fabric, whose fibers are to be uniformly distributed in the laminate so as to comply with the requirement of homogeneity. As a result, various types of glass fiber fabrics have successfully woven through the uniquely developed “MS process”, and it has been verified that each of the glass fabrics possesses the most suitable structure to attain uniform distribution in the laminates. The laminates, using the newly developed glass fabrics, have proved that the micro‐diameter drilling, that is laser drilling and mechanical drilling with 0.1mm diameter, can be performed very easily with less drill bit breakage, and produces uniform drill holes. It has also been proved that the laminates with the new glass fabrics reveal improved mechanical properties such as lower CTE, decreased warp and twist and better dimensional stability compared with conventional laminates of glass epoxy. Various styles of new glass fabric cover the wide range of thickness from 100 microns down to 27 microns.

Details

Circuit World, vol. 27 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 27 November 2007

Lianyu Fu, Jianguo Qu and Haibin Chen

To provide a clear picture of the current status of mechanical drilling of printed circuit boards (PCBs).

Abstract

Purpose

To provide a clear picture of the current status of mechanical drilling of printed circuit boards (PCBs).

Design/methodology/approach

A review paper detailing the developments of micro‐drill bit and PCB mechanical drilling techniques.

Findings

Mechanical drilling will still dominate the PCB hole processing methods. A design method on the basis of theoretical analysis, numerical simulation and experimental verifications is proved as an applicable way to improve the drill bit design efficiency. Newly developed tungsten carbide, novel coating techniques and high‐performance steel‐shank micro‐drill bits are expected. Solutions of micro‐drill bits for high‐density interconnection, IC substrate flexible PCBs, halogen and lead‐free assembly compatible PCBs, as well as 2 mm shank diameter drill bit are worthy of being concerned.

Originality/value

The paper highlights the state‐of‐the‐art techniques of micro‐drill bit manufacturing and novel developed micro‐drill bit. The development direction of micro‐drill bit in the future is concluded.

Details

Circuit World, vol. 33 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 February 1988

A.L. Kenney and J.W. Dally

As microelectronics continue to shrink, it is becoming increasingly difficult and expensive to mechanically drill very small via holes (<0·010 in.). Using lasers and optical…

Abstract

As microelectronics continue to shrink, it is becoming increasingly difficult and expensive to mechanically drill very small via holes (<0·010 in.). Using lasers and optical technology, it is possible to drill any material. Thin circuit board materials of various compositions were investigated as candidates for laser drilling using a 100 watt CO2 laser. Laser variables were pulse frequency, duty cycle, and number of pulses (total energy delivered). Delivered energy seems to be the most critical parameter, and the optimal holes were drilled within a narrow energy band, although there was much data scatter. The best laser drilled holes were of lower quality than that obtainable with mechanical drilling. Photographs of the best holes in all materials are included.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

1 – 10 of over 4000