Search results

1 – 10 of over 3000
Article
Publication date: 16 October 2018

Shaohua Yang, Wei Long and Fangwei Ning

Velocity slipping model, based on the stratification theory (the film in inflatable support area of aerostatic guide way was divided into near wall layer, thin layer and…

Abstract

Purpose

Velocity slipping model, based on the stratification theory (the film in inflatable support area of aerostatic guide way was divided into near wall layer, thin layer and continuous flow layer in the direction of height), was established, and the model was combined with viscosity changes in each layer.

Design/methodology/approach

Simulated and analyzed by LAMMPS and two-dimensional molecular dynamics method, some relevant conclusions were drawn.

Findings

At a high temperature, viscosity is low, velocity slipping is large and velocity gaps in near-wall layer and thin layer are large. When the temperature is constant, the dimensionless slipping length and Kn number are linear.

Research limitations/implications

The effect of the equivalent viscosity on gas slipping model is proposed. viscosity is smaller, gas velocity slipping is greater, temperature is higher, gas velocity slipping is greater, velocity gap of near wall layer and thin layer is larger. When the temperature is constant, the dimensionless slipping length ls and Kn number are linear.

Originality/value

The global model of lubricating film velocity slipping between plates was established, and mathematical expression of slipping model in each layer, based on the stratification theory, was presented.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 May 2009

Bayram Celik and Firat Oguz Edis

The purpose of this paper is to present a computational study to investigate the effects of rectangular cavity design of a piezoelectrically driven micro‐synthetic‐jet actuator on…

Abstract

Purpose

The purpose of this paper is to present a computational study to investigate the effects of rectangular cavity design of a piezoelectrically driven micro‐synthetic‐jet actuator on generated flow.

Design/methodology/approach

Flow simulations were done using a compressible Navier‐Stokes solver, which is based on finite element method implementation of a characteristic‐based‐split (CBS) algorithm. The algorithm uses arbitrary Lagrangian‐Eulerian formulation, which allows to model oscillation of the synthetic jet's diaphragm in a realistic manner. Since all simulated flows are in the slip‐flow‐regime, a second order slip‐velocity boundary condition was applied along the cavity and orifice walls. Flow simulations were done for micro‐synthetic‐jet configurations with various diaphragm deflections amplitudes, cavity heights, and widths. All of the simulation results were compared with each other and evaluated in terms of the exit jet velocities, slip‐velocities on the orifice wall and instantaneous momentum fluxes at the jet exit.

Findings

It is shown that compressibility and rarefaction have important effects on the flow field generated by the micro‐synthetic‐jet actuator. The effect of the geometrical parameters of the cavity to important flow features such slip and phase lag are presented.

Originality/value

The paper reports results of a systematical study of the flow field inside a micro‐scale synthetic‐jet actuator, providing designers of such devices additional information for sizing the cavity within slip flow regime. Furthermore, it is demonstrated that the CBS, together with slip boundary conditions can be successfully used to compute such flows.

Details

Aircraft Engineering and Aerospace Technology, vol. 81 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 June 2019

Ehsan Gholamalizadeh, Farzad Pahlevanzadeh, Kamal Ghani, Arash Karimipour, Truong Khang Nguyen and Mohammad Reza Safaei

This study aims to numerically study the forced convection effects on a two-dimensional microchannel filled with a porous material containing the water/FMWCNT nanofluid. The upper…

Abstract

Purpose

This study aims to numerically study the forced convection effects on a two-dimensional microchannel filled with a porous material containing the water/FMWCNT nanofluid. The upper and lower microchannel walls were fully insulated thermally along 15 per cent of their lengths at each end of the microchannel, with the in-between length being exposed to a constant temperature. The slip velocity boundary condition was applied along the microchannel walls.

Design/methodology/approach

The Navier–Stokes equations were discretized before being solved numerically via a FORTRAN computer code. The following ranges were considered for the studied parameters: slip factor (B) equal to 0.001, 0.01 and 0.1; Reynolds number (Re) between 10 and 100; solid nanoparticle mass fraction (ϕ) between 0.0012 and 0.0025; Darcy number (Da) between 0.001 and 0.1; and porosity factor (ε) between 0.4 and 0.9.

Findings

Increasing the Da caused a greater increase in the velocity profile than increasing Re, whereas increasing porosity did not affect the velocity profile growth at all.

Originality/value

This paper is the continuation of the authors’ previous studies. Using the water/FMWCNT nanofluid as the working fluid in microchannels is among the achievements of this study.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

Masoud Kharati-Koopaee and Mahsa Rezaee

The purpose of the current research is to study the turbulent flow through microchannels having a micropost in aligned and staggered arrangements.

Abstract

Purpose

The purpose of the current research is to study the turbulent flow through microchannels having a micropost in aligned and staggered arrangements.

Design/methodology/approach

Numerical calculations are performed on the basis of the finite volume approach, which is based on the SIMPLEC algorithm. In this work, the slip velocity, flow velocity distribution and friction factor for the two micropost patterns are examined at friction Reynolds numbers of Reτ = 395 and 590, relative module widths of Wm = 0.1 and 1 and cavity fraction range of Fc = 0.1 to 0.9.

Findings

Results reveal that for the two micropost patterns, as the friction Reynolds number, relative module width or cavity fraction increases, the slip velocity increases and friction factor decreases. It is found that the aligned micropost configuration leads to higher slip velocity and lower friction factor. Numerical findings indicate that the existence of the continuous cavity surface along the flow direction could be a significant criterion to realize if the velocity distribution deviates from that of the smooth channel. It is also shown that the turbulent flows are capable of producing more drag reduction than the laminar ones.

Originality/value

Previous studies have shown that microchannels consisting of a micropost pattern in aligned and staggered arrangements could be viewed as a promising alternative in the microscale flows for the heat removal purposes. Therefore, understanding the fluid flow through microchannels consisting of these configurations (which is a prerequisite to better understand thermal performance of such microchannels) is a significant issue, which is the subject of the present work.

Details

Engineering Computations, vol. 34 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 February 2021

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with…

Abstract

Purpose

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with periodically placed discrete hydrophobic heat sources. Formation of a thin depletion layer of low viscosity over each hydrophobic heated patch leads to the velocity slip and temperature jump condition at the interface of the hydrophobic patch.

Design/methodology/approach

The mixed convection of the nanofluid is analysed based on the two-phase non-homogeneous model. The governing equations are solved numerically through a control volume approach. A periodic boundary condition is adopted along the longitudinal direction of the modulated channel. A velocity slip and temperature jump condition are imposed along with the hydrophobic heated stripes. The paper has validated the present non-homogeneous model with existing experimental and numerical results for particular cases. The impact of temperature jump condition and slip velocity on the flow and thermal field of the nanofluid in mixed convection is analysed for a wide range of governing parameters, namely, Reynolds number (50 ≤ Re ≤ 150), Grashof number ( 103Gr5×104), nanoparticle bulk volume fraction ( 0.01φb0.05), nanoparticle diameter ( 30dp60) and the angle of inclination ( 60°σ60°).

Findings

The presence of the thin depletion layer above the heated stripes reduces the heat transfer and augments the volume flow rate. Consideration of the nanofluid as a coolant enhances the rate of heat transfer, as well as the entropy generation and friction factor compared to the clear fluid. However, the rate of increment in heat transfer suppresses by a significant margin of the loss due to enhanced entropy generation and friction factor. Heat transfer performance of the channel diminishes as the channel inclination angle with the horizontal is increased. The paper has also compared the non-homogeneous model with the corresponding homogeneous model. In the non-homogeneous formulation, the nanoparticle distribution is directly affected by the slip conditions by virtue of the no-normal flux of nanoparticles on the slip planes. For this, the slip stripes augment the impact of nanoparticle volume fraction compared to the no-slip case.

Originality/value

This paper finds that the periodically arranged hydrophobic heat sources on the lower wall of the channel create a significant augmentation in the volume flow rate, which may be crucial to augment the transport process in mini- or micro-channels. This type of configuration has not been addressed in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2021

Wenqiang Guo, Guoxiang Hou, Yin Guan and Senyun Liu

This paper aims to explore the mechanism of the slip phenomenon at macro/micro scales, and analyze the effect of slip on fluid flow and heat transfer, to reduce drag and enhance…

Abstract

Purpose

This paper aims to explore the mechanism of the slip phenomenon at macro/micro scales, and analyze the effect of slip on fluid flow and heat transfer, to reduce drag and enhance heat transfer.

Design/methodology/approach

The improved tangential momentum accommodation coefficient scheme incorporated with Navier’s slip model is introduced to the discrete unified gas kinetic scheme as a slip boundary condition. Numerical tests are simulated using the D2Q9 model with a code written in C++.

Findings

Velocity contour with slip at high Re is similar to that without slip at low Re. For flow around a square cylinder, the drag is reduced effectively and the vortex shedding frequency is reduced. For flow around a delta wing, drag is reduced and lift is increased significantly. For Cu/water nanofluid in a channel with surface mounted blocks, drag can be reduced greatly by slip and the highest value of drag reduction (DR) (67.63%) can be obtained. The highest value of the increase in averaged Nu (11.78%) is obtained by slip at Re = 40 with volume fraction φ=0.01, which shows that super-hydrophobic surface can enhance heat transfer by slip.

Originality/value

The present study introduces and proposes an effective and superior method for the numerical simulation of fluid/nanofluid slip flow, which has active guidance meaning and applied value to the engineering practice of DR, heat transfer, flow control and performance improvement.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 August 2007

Haibo Huang, T.S. Lee and C. Shu

This paper aims to examine how using lattice Boltzmann method (LBM) aids the study of the isothermal‐gas flow with slight rarefaction in long microtubes.

1172

Abstract

Purpose

This paper aims to examine how using lattice Boltzmann method (LBM) aids the study of the isothermal‐gas flow with slight rarefaction in long microtubes.

Design/methodology/approach

A revised axisymmetric lattice Boltzmann model is proposed to simulate the flow in microtubes. The wall boundary condition combining the bounce‐back and specular‐reflection schemes is used to capture the slip velocity on the wall. Appropriate relation between the Knudsen number and relax‐time constant is defined.

Findings

The computed‐slip velocity, average velocity and non‐linear pressure distribution along the microtube are in excellent agreement with analytical solution of the weakly compressible Navier‐Stokes equations. The calculated‐friction factors are also consistent with available experimental data. For simulations of slip flow in microtube, LBM is more accurate and efficient than DSMC method.

Research limitations/implications

The laminar flow in circular microtube is assumed to be axisymmetric. The present LBM is only applied to the simulation of slip flows (0.01 < Kn0<0.1) in microtube.

Practical implications

Lattice‐BGK method is a very useful tool to investigate the micro slip flows.

Originality/value

A revised axisymmetric D2Q9 lattice Boltzmann model is proposed to simulate the slip flow in axisymmetric microtubes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 17 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 June 2020

A. Ali, Soma Mitra Banerjee and S. Das

The purpose of this study is to analyze an unsteady MHD Darcy flow of nonNewtonian hybrid nanoliquid past an exponentially accelerated vertical plate under the influence of…

60

Abstract

Purpose

The purpose of this study is to analyze an unsteady MHD Darcy flow of nonNewtonian hybrid nanoliquid past an exponentially accelerated vertical plate under the influence of velocity slip, Hall and ion slip effects in a rotating frame of reference. The fluids in the flow domain are assumed to be viscously incompressible electrically conducting. Sodium alginate (SA) has been taken as a base Casson liquid. A strong uniform magnetic field is applied under the assumption of low magnetic Reynolds number. Effect of Hall and ion-slip currents on the flow field is examined. The ramped heating and time-varying concentration at the plate are taken into consideration. First-order homogeneous chemical reaction and heat absorption are also considered. Copper and alumina nanoparticles are dispersed in base fluid sodium alginate to be formed as hybrid nanoliquid.

Design/methodology/approach

The model problem is first formulated in terms of partial differential equations (PDEs) with physical conditions. Laplace transform method (LTM) is used on the nondimensional governing equations for their closed-form solution. Based on these results, expressions for nondimensional shear stresses, rate of heat and mass transfer are also determined. Graphical presentations are chalked out to inspect the impacts of physical parameters on the pertinent physical flow characteristics. Numerical values of the shear stresses, rate of heat and mass transfer at the plate are tabulated for various physical parameters.

Findings

Numerical exploration reveals that a significant increase in the secondary flow (i.e. crossflow) near the plate is guaranteed with an augmenting in Hall parameter or ion slip parameter. MHD and porosity have an opposite effect on velocity component profiles for both types of nanoliquids. Result addresses that both shear stresses are strongly enhanced by the Casson effect. Also, hybrid nanosuspension in Casson fluid (sodium alginate) exhibits a lower rate of heat transfer than usual nanoliquid.

Social implications

This model may be pertinent in cooling processes of metallic infinite plate in bath and hybrid magnetohydrodynamic (MHD) generators, metallurgical process, manufacturing dynamics of nanopolymers, magnetic field control of material processing, synthesis of smart polymers, making of paper and polyethylene, casting of metals, etc.

Originality/value

The originality of this study is to obtain an analytical solution of the modeled problem by using the Laplace transform method (LTM). Such an exact solution of nonNewtonian fluid flow, heat and mass transfer is rare in the literature. It is also worth remarking that the influence of Hall and ion slip effects on the flow of nonNewtonian hybrid nanoliquid is still an open question.

Article
Publication date: 29 July 2014

Fubing Bao, Zhihong Mao and Limin Qiu

The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular…

Abstract

Purpose

The purpose of this paper is to investigate the gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels based on the molecular dynamics simulation.

Design/methodology/approach

An external gravity force was employed to drive the flow. The density and velocity profiles across the channel, and the velocity slip on the wall were studied, considering different gas temperatures and gas-solid interaction strengths.

Findings

The simulation results demonstrate that a single layer of gas molecules is adsorbed on wall surface. The density of adsorption layer increases with the decrease of gas temperature and with increase of interaction strength. The near wall region extents several molecular diameters away from the wall. The density profile is flatter at higher temperature and the velocity profile has the traditional parabolic shape. The velocity slip on the wall increases with the increase of temperature and with decrease of interaction strength linearly. The average velocity decreases with the increase of gas-solid interaction strength.

Originality/value

This research presents gas flow characteristics in near wall region and the velocity slip phenomenon on the wall in nano-channels. Some interesting results in nano-scale channels are obtained.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 October 2018

Prabhugouda Mallanagouda Patil and Shashikant A.

The purpose of this paper is to consider the influence of slip flow and thermal jump and to investigate its effects on unsteady mixed convection along an exponentially stretching…

Abstract

Purpose

The purpose of this paper is to consider the influence of slip flow and thermal jump and to investigate its effects on unsteady mixed convection along an exponentially stretching surface. It is also intended to explore the influence of suction/injection and volumetric heat source/sink on the fluid flow.

Design/methodology/approach

The assumed problem is modelled into governing equations which are dimensional non-linear partial differential equations in nature. To obtain solutions, initially the governing equations were made non-dimensional by the suitable non-similar transformations. Then, the dimensionless non-linear partial differential equations are linearized with the aid of Quasilinearization technique. The so obtained equations are discretized by the implicit finite difference method.

Findings

The detailed analysis of the considered problem displays that the non-similarity variable reduces the velocity and temperature profiles. For higher values of mixed convection parameter, the magnitude of velocity profile as well as the Nusselt number increase. The unsteady variable diminishes the fluid flow. The higher values of velocity ratio parameter reduce the skin-friction coefficient. Further, the magnitude of skin-friction coefficient and heat transfer rate are to minimize for increasing values of partial slip and thermal jump parameters, respectively. Volumetric heat source and injection parameters are to rise the flow behavior within the momentum and thermal boundary layers significantly.

Originality/value

To the best of authors’ knowledge, no such investigation has been found in the literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 3000