Search results

1 – 2 of 2
Article
Publication date: 6 August 2019

Ashwani Assam, Nikhil Kalkote, Nishanth Dongari and Vinayak Eswaran

Accurate prediction of temperature and heat is crucial for the design of various nano/micro devices in engineering. Recently, investigation has been carried out for calculating…

Abstract

Purpose

Accurate prediction of temperature and heat is crucial for the design of various nano/micro devices in engineering. Recently, investigation has been carried out for calculating the heat flux of gas flow using the concept of sliding friction because of the slip velocity at the surface. The purpose of this study is to exetend the concept of sliding friction for various types of nano/micro flows.

Design/methodology/approach

A new type of Smoluchowski temperature jump considering the viscous heat generation (sliding friction) has recently been proposed (Le and Vu, 2016b) as an alternative jump condition for the prediction of the surface gas temperature at solid interfaces for high-speed non-equilibrium gas flows. This paper investigated the proposed jump condition for the nano/microflows which has not been done earlier using four cases: 90° bend microchannel pressure-driven flow, nanochannel backward facing step with a pressure-driven flow, nanoscale flat plate and NACA 0012 micro-airfoil. The results are compared with the available direct simulation Monte Carlo results. Also, this paper has demonstrated low-speed preconditioned density-based algorithm for the rarefied gas flows. The algorithm captured even very low Mach numbers of 2.12 × 10−5.

Findings

Based on this study, this paper concludes that the effect of inclusion of sliding friction in improving the thermodynamic prediction is case-dependent. It is shown that its performance depends not only on the slip velocity at the surface but also on the mean free path of the gas molecule and the shear stress at the surface. A pressure jump condition was used along with the new temperature jump condition and it has been found to often improve the prediction of surface flow properties significantly.

Originality/value

This paper extends the concept of using sliding friction at the wall for micro/nano flows. The pressure jump condition was used which has been generally ignored by researchers and has been found to often improve the prediction of surface flow properties. Different flow properties have been studied at the wall apart from only temperature and heat flux, which was not done earlier.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 July 2018

Basant Kumar Jha and Michael O. Oni

The purpose of this paper is to investigate the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.

Abstract

Purpose

The purpose of this paper is to investigate the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.

Design/methodology/approach

Analytical solution in terms of Bessel’s function and modified Bessel’s function of order 0 and 1 is obtained for velocity, temperature, Nusselt number, skin friction and mass flow rate.

Findings

It is established that the role of Knudsen number and fluid–wall interaction parameter is to decrease fluid temperature, velocity, Nusselt number and skin friction.

Research limitations/implications

No laboratory practical or experiment was conducted.

Practical implications

Cooling device in electronic panels, card and micro-chips is frequently cooled by natural convection.

Originality/value

In view of the amount of works done on natural convection in microchannel, it becomes interesting to investigate the effect that time-periodic heating has on natural convection flow in a vertical micro-annulus. The purpose of this paper is to examine the impact of time-periodic thermal boundary conditions on natural convection flow in a vertical micro-annulus.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 2 of 2