Search results

1 – 10 of 93
Article
Publication date: 23 June 2020

S. Sarkar, R.N. Jana and S. Das

The purpose of this article is to analyze the heat and mass transfer with entropy generation during magnetohydrodynamics (MHD) flow of non-Newtonian Sisko nanofluid over a…

Abstract

Purpose

The purpose of this article is to analyze the heat and mass transfer with entropy generation during magnetohydrodynamics (MHD) flow of non-Newtonian Sisko nanofluid over a linearly stretching cylinder under the influence of velocity slip, chemical reaction and thermal radiation. The Brownian motion, thermophoresis and activation energy are assimilated in this nanofluid model. Convective boundary conditions on heat and mass transfer are considered. The physical model may have diverse applications in several areas of technology underlying thermohydrodynamics including supercritical fluid extraction, refrigeration, ink-jet printing and so on.

Design/methodology/approach

The dimensional governing equations are nondimensionalized by using appropriate similarity variables. The resulting boundary value problem is converted into initial value problem using the method of superposition and numerically computed by employing well-known fourth-order Runge–Kutta–Fehlberg approach along with shooting technique (RKF4SM). The quantitative impacts of emerging physical parameters on the velocity, temperature, concentration, skin friction coefficient, Nusselt number, Sherwood number, entropy generation rate and Bejan number are presented graphically and in tabular form, and the salient features are comprehensively discussed.

Findings

From graphical outcomes, it is concluded that the slip parameters greatly influence the flow characteristics. Fluid temperature is elevated with rising radiation parameter and thermal Biot number. Nanoparticle concentration is reported in decreasing form with activation energy parameter. Entropy is found to be an increasing function of magnetic field, Brownian motion and material parameters. The entropy is less generated for shear-thinning fluid compared to shear-thickening as well as Newtonian fluids in the system.

Originality/value

Till now no study has been documented to explore the impact of binary chemical reaction with Arrhenius activation energy on entropy generation in an MHD boundary layer flow of non-Newtonian Sisko nanofluid over a linear stretching cylinder with velocity slip and convective boundary conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 2020

Ankita Bisht and Rajesh Sharma

The main purpose of this study is to present a non-similar analysis of two-dimensional boundary layer flow of non-Newtonian nanofluid over a vertical stretching sheet with…

149

Abstract

Purpose

The main purpose of this study is to present a non-similar analysis of two-dimensional boundary layer flow of non-Newtonian nanofluid over a vertical stretching sheet with variable thermal conductivity. The Sisko fluid model is used for non-Newtonian fluid with an exponent (n* > 1), that is, shear thickening fluid. Buongiorno model for nanofluid accounting Brownian diffusion and thermophoresis effects is used to model the governing differential equations.

Design/methodology/approach

The governing boundary layer equations are converted into nondimensional coupled nonlinear partial differential equations using appropriate transformations. The resultant differential equations are solved numerically using implicit finite difference scheme in association with the quasilinearization technique.

Findings

This analysis shows that the temperature raises for thermal conductivity parameter and velocity ratio parameter while decreases for the thermal buoyancy parameter. The thermophoresis and Brownian diffusion parameter that characterizes the nanofluid flow enhances the temperature and reduces the heat transfer rate. Skin friction drag can be effectively reduced by proper control of the values of thermal buoyancy and velocity ratio parameter.

Practical implications

The wall heating and cooling investigation result in the analysis of the control parameters that are related to the designing and manufacturing of thermal systems for cooling applications and energy harvesting. These control parameters have practical significance in the designing of heat exchangers and solar thermal collectors, in glass and polymer industries, in the extrusion of plastic sheets, the process of cooling of the metallic plate, etc.

Originality/value

To the best of authors’ knowledge, it is found from the literature survey that no similar work has been published which investigates the non-similar solution of Sisko nanofluid with variable thermal conductivity using finite difference method and quasilinearization technique.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2016

M.Y. Malik, Arif Hussain, T. Salahuddin and M. Awais

– The purpose of this paper is to examine the Sisko fluid model over a stretching cylinder with heat transfer and magnetohydrodynamics.

Abstract

Purpose

The purpose of this paper is to examine the Sisko fluid model over a stretching cylinder with heat transfer and magnetohydrodynamics.

Design/methodology/approach

The boundary layer approach is employed to simplify the governing equations. Suitable similarity transformations are used to transform the governing partial differential equations into ordinary differential equations. In order to solve this system of ordinary differential equations numerically, shooting method in conjunction with Runge-Kutta-Fehlberg method is used.

Findings

The effects of physical parameters involved in velocity and temperature profiles are shown through graphs. It is observed that Sisko fluid parameter and curvature parameter enhances fluid velocity while motion of fluid is retarded by increasing magnetic field strength. Additionally temperature of fluid raise with curvature parameter while it fall down for larger values of Prandtl number. Skin friction coefficient and Nusselt number are computed and presented in graphs and tables for further analysis. It can be seen that curvature parameter increases both skin friction and Nusselt number while magnetic field and Prandtl number decayed skin friction and Nusselt number, respectively. Also Sisko parameter enlarges skin friction coefficient. The accuracy of solution is verified by comparing it with existing literature.

Originality/value

The computed results are interested for industrial and engineering processes, especially in cooling of nuclear reactors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2021

Naveed Imran and Maryiam Javed

Particular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal…

Abstract

Purpose

Particular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal distribution, momentum profile and concentration profile.

Design/methodology/approach

In the field of engineering, biologically inspired propulsion systems are getting the utmost importance. Keeping in view their developmental progress, the present study was made. The theoretical analysis explores the effect of heat and mass transfer on non-Newtonian Sisko fluid with slip effects and transverse magnetic field in symmetric compliant channel. Using low Reynolds number, so that the authors neglect inertial forces and for keeping the pressure constant during the flow, channel height is used largely as compared to the ratio of wavelength. The governing equations of fluid flow problem are solved using the perturbation analysis.

Findings

Results are considered for thickening, thinning and viscous nature of fluid models. It is found that the velocity distribution profile is boosted for increasing values of the Sisko fluid parameter and porous effect, while thermal profile is reducing for Brinkman number (viscous dissipation effects) for all cases. Moreover, shear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.

Originality/value

Hear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 May 2014

Masood Khan, Azeem Shahzad, Asia Anjum and Fazal M. Mahomed

– The purpose of this paper is to find analytic approximate solutions for time-dependent flow and heat transfer of a Sisko fluid.

Abstract

Purpose

The purpose of this paper is to find analytic approximate solutions for time-dependent flow and heat transfer of a Sisko fluid.

Design/methodology/approach

The homotopy analysis method is used to find a family of travelling wave solutions of the governing non-linear problem.

Findings

The effects of different parameters on the velocity and temperature profiles are shown graphically.

Originality/value

The analytic solutions of the system of non-linear ordinary differential equations are constructed in the series form for various values of the power index.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 November 2019

Muhammad Sohail and Sana Tariq

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary…

Abstract

Purpose

Thermal and species transport of magneto hydrodynamic Casson liquid over a stretched surface is investigated theoretically in this examination for the three-dimensional boundary layer flow of a yield exhibiting material. The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws that involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system. The purpose of this paper is to find the influence of different emerging parameters on fluid velocity, temperature and transport of species.

Design/methodology/approach

Reconstructed nonlinear boundary layer ordinary differential equations are analyzed through eigenvalues and eigenvectors. Due to the complexity and non-existence of the exact solution of the transformed equations, a convergent series solution by the homotopy algorithm is also derived. The reliability of the applied scheme is presented by comparing the obtained results with the previous findings.

Findings

Physical quantities of interest are displayed through graphs and tables and discussed for sundry variables. It is discerned that higher magnetic influence slows down fluid motion, whereas concentration and temperature profiles upsurge. Reliability of the recommended scheme is monitored by comparing the obtained results for the dimensionless stress as a limiting case of previous findings and an excellent agreement is observed. Higher values of Schmidt number reduce the concentration profile, whereas mounting the values of Prandtl number reduces the dimensionless temperature field. Moreover, heat and species transfer rates increase by mounting the values of thermal and concentration relaxation times.

Originality/value

The phenomenon of heat and species relocation is based upon modified Fourier and Fick’s laws which involves the relaxation times for the transportation of heat and mass. Conservation laws are modeled under boundary layer analysis in the Cartesian coordinates system.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 August 2021

Manoj Kumar Nayak, Sachin Shaw, H. Waqas and Taseer Muhammad

The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative…

Abstract

Purpose

The purpose of this study is to investigate the Cattaneo-Christov double diffusion, multiple slips and Darcy-Forchheimer’s effects on entropy optimized and thermally radiative flow, thermal and mass transport of hybrid nanoliquids past stretched cylinder subject to viscous dissipation and Arrhenius activation energy.

Design/methodology/approach

The presented flow problem consists of the flow, heat and mass transportation of hybrid nanofluids. This model is featured with Casson fluid model and Darcy-Forchheimer model. Heat and mass transportations are represented with Cattaneo-Christov double diffusion and viscous dissipation models. Multiple slip (velocity, thermal and solutal) mechanisms are adopted. Arrhenius activation energy is considered. For graphical and numerical data, the bvp4c scheme in MATLAB computational tool along with the shooting method is used.

Findings

Amplifying curvature parameter upgrades the fluid velocity while that of porosity parameter and velocity slip parameter whittles down it. Growing mixed convection parameter, curvature parameter, Forchheimer number, thermally stratified parameter intensifies fluid temperature. The rise in curvature parameter and porosity parameter enhances the solutal field distribution. Surface viscous drag gets controlled with the rising of the Casson parameter which justifies the consideration of the Casson model. Entropy generation number and Bejan number upgrades due to growth in diffusion parameter while that enfeeble with a hike in temperature difference parameter.

Originality/value

To the best of the authors’ knowledge, this research study is yet to be available in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2023

Takia Ahmed J. Al-Griffi and Abdul-Sattar J. Ali Al-Saif

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the electro-osmotic, magnetic field, chemical reaction and porosity using a new analytical method. In addition, the mathematical model presented by the researchers Tripathi and Sharma (2018c) was successfully developed by adding the effect of electro-osmosis and studying the impact of the new addition in the developed model on blood flow.

Design/methodology/approach

A new analytical method was used to find the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. This technique is based on integrating the Akbari-Ganji and the homotopy perturbation methods.

Findings

The results of axial velocity, concentration, temperature and the wall shear stress for blood flow were analyzed in the cases of the absence and presence of electro-osmosis. Furthermore, in these two states of electro-osmosis, a contour plot was created to show the difference in the profile of velocity to the flow of blood when the magnetic field was increased and the altitude of stenosis was increased. The results showed that the new technique is effective and has high accuracy to determine the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. The validity, utility and necessity of the new method were illustrated from the graphs of the new solutions; in addition, there is an excellent agreement with the results of previous studies.

Originality/value

This paper focuses on developing the mathematical model which was presented by the researchers Tripathi and Sharma (2018c), by adding the effect of the electro-osmosis to it, which has been successfully developed. According to the authors’ modest information, the new system has not been studied before. This current problem is solved by using an innovative approach known as the Akbari-Ganji homotopy perturbation method (AGHPM) which has not been used before in two cases: the presence and absence of the effect of electro-osmosis. This new technique afford new with effective and has high accuracy results. Furthermore, the new study (i.e. adding effect of electro-osmosis) with the applications of (variable viscosity, magnetic field, chemical reaction and porosity) illustrated the importance of applying electro-osmosis and how doctors can benefit from it during surgeries through proper use.

Article
Publication date: 22 July 2019

Waqar Azeem Khan, Muhammad Waqas, Mehboob Ali, F. Sultan, M. Shahzad and M. Irfan

This paper aims to develop a mathematical model featuring Brownian motion and thermophoresis. The idea of curved stretching subjected to time-dependent non-Newtonian (Sisko) fluid

Abstract

Purpose

This paper aims to develop a mathematical model featuring Brownian motion and thermophoresis. The idea of curved stretching subjected to time-dependent non-Newtonian (Sisko) fluid flow is introduced.

Design/methodology/approach

Shooting scheme is implemented to compute nonlinear systems.

Findings

Velocity profile of Sisko magnetonanofluid enhances for augmented values of curvature parameter.

Originality/value

To the best of the authors’ knowledge, no such analysis has yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 July 2019

Waqar Azeem Khan, Mehboob Ali, Muhammad Waqas, M. Shahzad, F. Sultan and M. Irfan

This paper aims to address the flow of Sisko nanofluid by an unsteady curved surface. Non-uniform heat source/sink is considered for heat transfer analysis.

Abstract

Purpose

This paper aims to address the flow of Sisko nanofluid by an unsteady curved surface. Non-uniform heat source/sink is considered for heat transfer analysis.

Design/methodology/approach

Numerical solutions are constructed using bvp4c procedure.

Findings

Pressure profile inside boundary region is increased when A and K are enhanced.

Originality/value

No such analysis is yet presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 93