Search results

1 – 10 of 424
Article
Publication date: 11 February 2019

Muhammad Taimoor, Li Aijun and Rooh ul Amin

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based…

Abstract

Purpose

The purpose of this paper aims to investigate an effective algorithm for different types of disturbances rejection. New dynamics are designed based on disturbance. Observer-based sliding mode control (SMC) technique is used for approximation the disturbances as well as to stabilize the system effectively in presence of uncertainties.

Design/methodology/approach

This research work investigates the disturbances rejection algorithm for fixed-wing unmanned aerial vehicle. An algorithm based on SMC is introduced for disturbances rejection. Two types of disturbances are considered, the constant disturbance and the sinusoidal disturbance. The comprehensive lateral and longitudinal models of the system are presented. Two types of dynamics, the dynamics without disturbance and the new dynamics with disturbance, are presented. An observer-based algorithm is presented for the estimation of the dynamics with disturbances. Intensive simulations and experiments have been performed; the results not only guarantee the robustness and stability of the system but the effectiveness of the proposed algorithm as well.

Findings

In previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated.

Practical implications

As the stability is always important for flight, so the algorithm proposed in this research guarantees the robustness and rejection of disturbances, which plays a vital role in practical life for avoiding any kind of damage.

Originality/value

In the previous research work, new dynamics based on disturbances rejection are not investigated in detail; in this research work both the lateral and longitudinal dynamics with different disturbances are investigated. An observer-based SMC not only approximates the different disturbances and also these disturbances are rejected in order to guarantee the effectiveness and robustness.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 May 2022

Bingwei Gao, Wei Shen, Ye Dai and Yong Tai Ye

This paper aims to study a parameter tuning method for the active disturbance rejection control (ADRC) to improve the anti-interference ability and position tracking of the…

1470

Abstract

Purpose

This paper aims to study a parameter tuning method for the active disturbance rejection control (ADRC) to improve the anti-interference ability and position tracking of the performance of the servo system, and to ensure the stability and accuracy of practical applications.

Design/methodology/approach

This study proposes a parameter self-tuning method for ADRC based on an improved glowworm swarm optimization algorithm. The algorithm is improved by using sine and cosine local optimization operators and an adaptive mutation strategy. The improved algorithm is then used for parameter tuning of the ADRC to improve the anti-interference ability of the control system and ensure the accuracy of the controller parameters.

Findings

The authors designed an optimization model based on MATLAB, selected examples of simulation and experimental research and compared it with the standard glowworm swarm optimization algorithm, particle swarm algorithm and artificial bee colony algorithm. The results show that the response time of using the improved glowworm swarm optimization algorithm to optimize the auto-disturbance rejection control is short; there is no overshoot; the tracking process is relatively stable; the anti-interference ability is strong; and the optimization effect is better.

Originality/value

The innovation of this study is to improve the glowworm swarm optimization algorithm, propose a sine and cosine, local optimization operator, expand the firefly search space and introduce a new adaptive mutation strategy to adaptively adjust the mutation probability based on the fitness value, improve the global search ability of the algorithm and use the improved algorithm to adjust the parameters of the active disturbance rejection controller.

Article
Publication date: 9 August 2021

Dinesh D. Dhadekar, Ajay Misra and S.E. Talole

The purpose of the paper is to design a nonlinear dynamic inversion (NDI) based robust fault-tolerant control (FTC) for aircraft longitudinal dynamics subject to system…

Abstract

Purpose

The purpose of the paper is to design a nonlinear dynamic inversion (NDI) based robust fault-tolerant control (FTC) for aircraft longitudinal dynamics subject to system nonlinearities, aerodynamic parametric variations, external wind disturbances and fault/failure in actuator.

Design/methodology/approach

An uncertainty and disturbance estimator (UDE) technique is used to provide estimate of total disturbance enabling its rejection and thereby achieving robustness to the proposed NDI controller. As needed in the NDI design, the successive derivatives of the output are obtained through an UDE robustified observer making the design implementable. Further, a control allocation scheme consigns control command from primary actuator to the secondary one in the event of fault/failure in the primary actuator.

Findings

The robustness is achieved against the perturbations mentioned above in the presence of actuator fault/failure.

Practical implications

Lyapunov analysis proves practical stability of the controller–observer structure. The efficacy and superiority of the proposed design has been demonstrated through Monte-Carlo simulation.

Originality/value

Unlike in many FTC designs, robustness is provided against system nonlinearities, aerodynamic parametric variations, external wind disturbances and sinusoidal input disturbance using a single control law which caters for fault-free, as well as faulty actuator scenario.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 June 2021

Dong Mei and Zhu-Qing Yu

This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform…

Abstract

Purpose

This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform that ensures the stability and clarity of synthetic aperture radar imaging.

Design/methodology/approach

This study proposes a disturbance rejection control scheme for an airborne radar stabilized platform based on the active disturbance rejection control (ADRC) inverse estimation algorithm. Exploiting the extended state observer (ESO) characteristic, an inversely ESO is developed to inverse estimate the unmodeled state and extended state of the platform system known as total disturbances, which greatly improves the estimation performance of the disturbance. Then, based on the inverse ESO result, feedback the difference between the output of the tracking differentiator and the inverse ESO result to the nonlinear state error feedback controller (NLSEF) to eliminate the effects of total disturbance and ensure the stability of the airborne radar stabilized platform.

Findings

Simulation experiments are adopted to compare the performance of the ADRC inverse estimation algorithm with that of the proportional integral derivative controller which is one of the mostly applied control schemes in platform systems. In addition, classical ADRC is compared as well. The results have shown that the ADRC inverse estimation algorithm has a better disturbance rejection performance when disturbance acts in airborne radar stabilized platform, especially disturbed by continuous airflow under some harsh air conditions.

Originality/value

The originality of this paper is exploiting the ESO characteristic to develop an inverse ESO, which greatly improves the estimation performance of the disturbance. And the ADRC inverse estimation algorithm is applied to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.

Details

Assembly Automation, vol. 41 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 August 1958

T. Czaykowski

Usual definitions of damping in oscillatory modes are reviewed, a new definition is proposed and it is suggested that the latter offers certain advantages to both the theoretical…

Abstract

Usual definitions of damping in oscillatory modes are reviewed, a new definition is proposed and it is suggested that the latter offers certain advantages to both the theoretical and the practical worker in this field. An Appendix contains response formulae for three fundamental types of disturbance. These can be used for the derivation of the various expressions characterizing dynamic properties of any mode that is equivalent to a damped system of one degree of freedom. A collection of formulae, numerical tables and graphs permit a quick comparison to be made between the different definitions of damping.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 26 February 2024

Leonardo Valero Pereira, Walter Jesus Paucar Casas, Herbert Martins Gomes, Luis Roberto Centeno Drehmer and Emanuel Moutinho Cesconeto

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road…

Abstract

Purpose

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road profile.

Design/methodology/approach

For a classically designed linear quadratic regulator (LQR) control, the vibration attenuation performance will depend on weighting matrices Q and R. A methodology is proposed in this work to determine the optimal elements of these matrices by using a genetic algorithm method to get enhanced controller performance. The active control is implemented in an eight degrees of freedom (8-DOF) vehicle suspension model, subjected to a standard ISO road profile. The control performance is compared against a controlled system with few Q and R parameters, an active system without optimized gain matrices, and an optimized passive system.

Findings

The control with 12 optimized parameters for Q and R provided the best vibration attenuation, reducing significantly the Root Mean Square (RMS) accelerations at the driver’s seat and car body.

Research limitations/implications

The research has positive implications in a wide class of active control systems, especially those based on a LQR, which was verified by the multibody dynamic systems tested in the paper.

Practical implications

Better active control gains can be devised to improve performance in vibration attenuation.

Originality/value

The main contribution proposed in this work is the improvement of the Q and R parameters simultaneously, in a full 8-DOF vehicle model, which minimizes the driver’s seat acceleration and, at the same time, guarantees vehicle safety.

Details

Engineering Computations, vol. 41 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 October 2010

Hardian Reza Dharmayanda, Agus Budiyono and Taesam Kang

The purpose of this paper is to design a model‐based robust controller for autonomous hovering of a small‐scale helicopter.

1111

Abstract

Purpose

The purpose of this paper is to design a model‐based robust controller for autonomous hovering of a small‐scale helicopter.

Design/methodology/approach

The model is developed using prediction error minimization (PEM) system identification method implemented to flight data. Based on the extracted linear model, an H controller is synthesized for robustness against parametric uncertainties and disturbances.

Findings

The proposed techniques for modelling provide a linear state‐space model which correlates well with the recorded flight data. The synthesized H controller demonstrates an effective performance which rejects both sinusoidal and step input disturbances. The controller enables the attitude angle follow the reference target while keeping the attitude rate constant about zero for hover flight condition.

Research limitations/implications

The synthesized controller is effective for hovering and low‐speed flight condition.

Practical implications

This work provides an efficient hovering/low‐speed autonomous helicopter flight control required in many civilian UAV applications such as aerial surveillance and photography.

Originality/value

The paper addresses the challenges of controlling a small‐scale helicopter during hover with inherent modelling uncertainties and disturbances.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 17 August 2021

Cheng Luo, Kunlun Zhang, Da Liang and Yongzhi Jing

The purpose of the paper is to study the stability control of permanent magnet (PM) and electromagnetic hybrid Halbach array electrodynamic suspension (EDS) system because of the…

Abstract

Purpose

The purpose of the paper is to study the stability control of permanent magnet (PM) and electromagnetic hybrid Halbach array electrodynamic suspension (EDS) system because of the poor suspension stability caused by the well-known under-damped nature of PM EDS system. The adjustment control is realized by PM and electromagnetic hybrid Halbach array, which is composed by winding active normal conductor coils on PM surface.

Design/methodology/approach

The three-dimensional (3-D) electromagnetic force analytical expression of PM and electromagnetic hybrid Halbach array EDS system for a nonmagnetic conductive plate is derived. And the accuracy of the derived equations is verified by a 3-D finite-element model (FEM). Basing on the 3-D levitation force expression, an acceleration feedback suspension controller is designed to suppress the vibration of PM EDS system, and the suspension stability of the system under the track and load disturbance was simulated and analyzed.

Findings

The 3-D electromagnetic force comparison of analytical model and FEM are in good agreement, which verifies the correctness of the analytical expression. The simulation results show that the acceleration feedback suspension controller can make the system have good suspension stability under the external disturbance. So it proved that the PM and electromagnetic hybrid Halbach array EDS system can overcome the poor suspension stability caused by the under-damped nature of PM EDS system through the designed acceleration feedback suspension controller.

Originality/value

This paper designed an acceleration feedback suspension controller to suppress the vibration of PM and electromagnetic hybrid Halbach array EDS system under external disturbance, basing on the derived levitation force analytical expression. And the simulation results show that the acceleration feedback suspension controller can make the system have good suspension stability under the external disturbance.

Article
Publication date: 13 May 2020

Dong Mei and Zhu-Qing Yu

This paper aims to improve the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous disturbance under complex air…

Abstract

Purpose

This paper aims to improve the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous disturbance under complex air conditions to ensure the clarity and stability of airborne radar imaging.

Design/methodology/approach

This paper proposes a new active disturbance rejection control (ADRC) strategy based on the cascade extended state observer (ESO) for airborne radar stabilization platform, which adopts two first-order ESOs to estimate the angular velocity value and the angular position value of the stabilized platform. Then makes the error signal which subtracts the estimated value of ESO from the output signal of the tracking-differentiator as the input signal of the nonlinear state error feedback (NLSEF), and according to the output signal of the NLSEF and the value which dynamically compensated the total disturbances estimated by the two ESO to produce the final control signal.

Findings

The simulation results show that, compared with the classical ADRC, the ADRC based on the cascade ESO not only estimates the unknown disturbance more accurately but also improves the delay of disturbance observation effectively due to the increase of the order of the observer. In addition, compared with the classical PID control and the classical ADRC, it has made great progress in response performance and anti-interference ability, especially in the complex air conditions.

Originality/value

The originality of the paper is the adoption of a new ADRC control strategy based on the cascade ESO to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.

Article
Publication date: 13 February 2024

Yi Xia, Yonglong Li, Hongbin Zang, Yanpian Mao, Haoran Wang and Jialong Li

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the…

Abstract

Purpose

A switching depth controller based on a variable buoyancy system (VBS) is proposed to improve the performance of small autonomous underwater vehicles (AUVs). First, the requirements of VBS for small AUVs are analyzed. Second, a modular VBS with high extensibility and easy integration is proposed based on the concepts of generality and interchangeability. Subsequently, a depth-switching controller is proposed based on the modular VBS, which combines the best features of the linear active disturbance rejection controller and the nonlinear active disturbance rejection controller.

Design/methodology/approach

The controller design and endurance of tiny AUVs are challenging because of their low environmental adaptation, limited energy resources and nonlinear dynamics. Traditional and single linear controllers cannot solve these problems efficiently. Although the VBS can improve the endurance of AUVs, the current VBS is not extensible for small AUVs in terms of the differences in individuals and operating environments.

Findings

The switching controller’s performance was examined using simulation with water flow and external disturbances, and the controller’s performance was compared in pool experiments. The results show that switching controllers have greater effectiveness, disturbance rejection capability and robustness even in the face of various disturbances.

Practical implications

A high degree of standardization and integration of VBS significantly enhances the performance of small AUVs. This will help expand the market for small AUV applications.

Originality/value

This solution improves the extensibility of the VBS, making it easier to integrate into different models of small AUVs. The device enhances the endurance and maneuverability of the small AUVs by adjusting buoyancy and center of gravity for low-power hovering and pitch angle control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of 424