Search results

1 – 10 of 187
Article
Publication date: 27 May 2014

E. Perumalsamy, J.C. Sakthivel and N. Anbumani

The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite…

Abstract

Purpose

The purpose of this paper is to elucidate the stress-strain relationships of single-jersey knitted fabrics from uniaxial tensile test followed by deformation behavior using finite element analysis. In order to elaborate the study, high, medium and low tightness knitted fabrics were selected and deformation of fabrics analyzed in course, wales and bias directions (0, 45 and 90 degrees).

Design/methodology/approach

This study focussed on uni-axial tensile test of produced test samples using Instron 6021 tester and a development of single-jersey knitted loop model using Auto Desk Inventor software (ADI). The knitted fabric material properties and knitted loop model was imported to ANSYS 12.0 software.

Findings

Due to structural changes the tightness and thickness of knitted fabric decreases with increase in loop length The tensile result shows maximum breaking strength at course direction (13.43 kg f/mm2 at 2.7 mm) and maximum extension at wales direction (165.77 kg f/mm2 at 3.3 mm). When the loop length increases, the elongation of fabrics increased and load carrying capacity of fabrics reduced. The Young's modulus, Poisson's ratio and shear modulus of fabrics reduced with increase in loop length. The deformation of fabrics increased with increase in loop length. The increase in loop length gives large amount of structural changes and it is due to slacking or jamming in loops and loosening in dimensions. When comparing the deformation results, the variation within the fabric is higher and structural damage little more when increasing the loop length of the fabric.

Originality/value

From ANOVA test, stress and strain distribution was statistically significant among course, wales and bias directions at 95 percent confidence level. The values got from Instron test indicates that testing direction can alter its deformation. In deformation analysis, comparing both experimental and prediction, high amount of structural changes observed in wales direction. The used tetrahedral elements can be used for contact analysis with high accuracy. For non-linear problems, consistent approach was proposed which makes the sense to compare with experimental methods. The proposed model will make possible developments and the preliminary validation tests shows good agreement with experimental data.

Details

International Journal of Clothing Science and Technology, vol. 26 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 August 2019

Seval Uyanik and Kubra Hatice Kaynak

Elastane yarns contribute significant elastic properties to all types of fabrics and these properties for very important for wears including tights, sportswear, under wear, casual…

Abstract

Purpose

Elastane yarns contribute significant elastic properties to all types of fabrics and these properties for very important for wears including tights, sportswear, under wear, casual wear, swimwear, corsetry, etc. in terms of appearance, comfort and duration of wear. The paper aims to discuss this issue.

Design/methodology/approach

It is investigated with this study strength, fatigue and bagging properties of plated plain knitted fabrics containing different rates of elastane.

Findings

The study showed that single jersey, not having elastane and having the lowest fabric tightness, has the lowest bursting strength, the highest fatigue loading values in high extensions, the lowest fatigue height values and the worst bagging behavior. On the contrary of single jersey, full elastane fabric has the exact opposite characteristics considering the fabric properties examined.

Originality/value

Fabric with 1×1 elastane and fabric with 2×1 elastane is similar, and these fabrics show bagging behavior better than single jersey and worse than full elastane fabric whereas the other properties of these fabrics are close to full elastane fabric.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Selin Hanife Eryuruk and Fatma Kalaoglu

Knitted fabrics containing elastane provide high level of comfort and ease of usage because of the elastic and drape properties over the body. Knitted fabrics respond to every…

811

Abstract

Purpose

Knitted fabrics containing elastane provide high level of comfort and ease of usage because of the elastic and drape properties over the body. Knitted fabrics respond to every movement of the body and return back to its original shape easily so they are used widely for apparel production. The most important properties required from the elastic knitted garments are wear comfort, fit, breathability and durability. The purpose of this paper is to analyse the effect of elastane yarn count and ground yarn count on the performance properties of 12 single jersey knitted fabrics were analysed after dying.

Design/methodology/approach

The research design for this study consists an experimental study. In all, 12 fabrics containing half plating and full plating elastane were produced using 30/1-40/1 Ne yarn counts. Bursting strength, stretch recovery, residual extension, air permeability, spirality and drape properties of fabrics were evaluated.

Findings

As a result of study it was found a certain effect as the elastane amount and count changed. For all types of knitted fabrics, bursting strength values increased and fabric spirality values decreased as the elastane amount and elastane yarn count increased. Also it was found a significant relationship between elastane amount and count with air permeability, spirality, bursting strength and drape.

Originality/value

As a result of the literature review, it was seen that the effects of elastane amount, elastane yarn count and fabric yarn count on the performance properties of knitted fabrics has not been studied broadly.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 22 November 2017

Kumar K.V., Sampath V.R. and Prakash C.

Air permeability of knitted fabrics is normally measured for the samples in their unstretched state. But, this air permeability values indicate the ability of these garments to…

Abstract

Purpose

Air permeability of knitted fabrics is normally measured for the samples in their unstretched state. But, this air permeability values indicate the ability of these garments to allow air through them when they are not in use. But, the real-time condition is different and certainly the knitted garments mentioned above will subject to a degree of stretch during their usage. So, the measurement of air permeability under stretch and the fabric properties which would influence the air permeability of weft-knitted fabrics in their stretched state is of paramount importance. The paper aims to discuss these issues.

Design/methodology/approach

The aim of this research work is to investigate the change in air permeability values under the incremental extension of cotton tubular weft-knitted fabrics produced from the yarns of different spinning systems.

Findings

From the results, it is evident that the pique fabric samples of compact spun yarn displayed the highest air permeability values during the incremental stretch at all the three relaxation states. It is followed by the pique samples of ring spun yarn. Next to pique samples, the jersey samples made from the compact yarn and ring spun yarn revealed more air permeability, respectively. The core spun pique samples and core spun jersey samples displayed the least air permeability values, respectively. But, the pique and jersey samples made up of ring yarn and compact yarn showed gradual reduction in their air permeability towards the incremental stretch and the core spun pique samples and core spun jersey samples were uniformly seen with gradual increase in their air permeability during the incremental stretch.

Originality/value

Very limited quantity of research has been carried out in this area. So, a novel attempt has been made in this research work to investigate the influence of incremental stretch on air permeability of single knit structures.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 January 2019

K. Chandrasekaran and M. Senthil Kumar

The purpose of this paper is to explore the synergic effect of wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) combination herbal extracts…

Abstract

Purpose

The purpose of this paper is to explore the synergic effect of wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) combination herbal extracts treatment on the moisture management properties of cotton, lyocell and micro-denier single jersey knitted fabrics and the factors affecting it, which is intended for the development of healthcare apparel products.

Design/methodology/approach

The pre-treated single jersey knitted fabrics of cotton, lyocell and micro-denier polyester fabrics were given finishing treatment with the wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) combination herbal extract proportions of 100%:0%, 75%:25%,50%:50%; 25%:75% and 0%:100%. The D-optimal factorial design developed using Design Expert software was used for the study. The finishing treatments were carried out using the pad−dry−cure method. The aim of the work is to find out the influence of combination herbal extract proportion, textile material and their interaction effect on the moisture management properties.

Findings

The ANOVA results revealed that the overall moisture management properties of single jersey knitted fabrics are influenced by the material type, combination herbal extract proportion and the interaction between material type and the combination herbal extracts proportion. The overall moisture management properties of combination herbal extracts treated cotton single jersey fabrics are found to be better than that of lyocell and micro-denier polyester fabrics due to their excellent accumulative one-way transport capability after the finishing treatment. Among the combination herbal extract proportions, 50:50 per cent combination herbal extract proportion was found to be better than other proportions.

Originality/value

The study on the moisture management properties of combination herbal extracts of wild turmeric (Curcuma Aromatica Salisb.) and holy basil (Ocimum Tenuiflorum L.) is a novel attempt to explore the synergic effect of active constituents in both the herbs.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 April 2019

Esin Sarıoğlu

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin…

Abstract

Purpose

The purpose of this paper is to compare the bursting strength, bursting distension, air permeability and wale wise wicking rate properties of recycled polyester (r-PET) and virgin polyester (v-PET) raw materials from which single jersey knitted fabric samples are manufactured. Meanwhile, numerical optimization method was used in predetermined parameters to determine the optimum r-PET and v-PET blend ratio and yarn manufacturing technology. In the optimization analysis, the average values of the important yarn and fabric properties inspected were taken as a target according to the 50 percent proportion of r-PET and v-PET fiber for both compact and ring yarn manufacturing technology.

Design/methodology/approach

To encourage the use of value-added textile products produced from recycling PET bottle with the focus of social responsibility is a condition that should be evaluated within the scope of waste management. The recycling of PET bottles and finding new opportunities for the uses in different field are crucial for both contributing environmental economy and conserving natural energy resources. The most important alternative ways is to use the r-PET fiber from recycling PET bottle in textile industry. In this study, 19.7 tex r-PET/cotton and v-PET/cotton-blended compact and ring spun yarns were produced at different blending ratios at the same production parameters.

Findings

Results showed that blend type, blend ratio and yarn manufacturing technology have statistical significance effect on bursting strength and air permeability. Besides, it was found that blend type has no significance on wale wise wicking rate unlike other parameters. Optimization analysis indicated that single jersey knitted fabric with v-PET/CO 58.62/41.38 percent compact yarn had higher desirability with the value of 0.72.

Originality/value

At the present time, r-PET fiber is blended in small amount (approximately 5–15 percent blend ratio) with both cotton and polyester together. In addition, it is possible using different fiber blend types instead of cotton and polyester according to the usage area. The most important question is to determine the amount of r-PET proportion. In other words, both optimum yarn/fabric quality parameters should be ensured and at the same time life cycle of the apparels should not be short when the optimum r-PET proportion is taken into consideration.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Govindan Karthikeyan, Govind Nalankilli, O L Shanmugasundaram and Chidambaram Prakash

– The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Abstract

Purpose

The purpose of this paper is to present the thermal comfort properties of single jersey knitted fabric structures made from bamboo, tencel and bamboo-tencel blended yarns.

Design/methodology/approach

Bamboo, tencel fibre and blends of the two fibres were spun into yarns of identical linear density (30s Ne). Each of the blended yarns so produced was converted to single jersey knitted fabrics with loose, medium and tight structures.

Findings

An increase in tencel fibre in the fabric had led to a reduction in fabric thickness and GSM. Air permeability and water-vapour permeability also increased with increase in tencel fibre content. The anticipated increase in air permeability and relative water vapour permeability with increase in stitch length was observed. The thermal conductivity of the fabrics was generally found to increase with increase in the proportion of bamboo.

Research limitations/implications

It is clear from the foregoing that, although a considerable amount of work has been done on bamboo blends and their properties, still there are many gaps existing in the literature, in particular, on thermal comfort, moisture management and spreading characteristics. Thus the manuscript addresses these issues and provides valuable information on the comfort characteristics of the blended fabrics for the first time. In the evolution of this manuscript, it became apparent that a considerable amount of work was needed to fill up the gaps existing in the literature and hence this work which deals with an investigation of the blend yarn properties and comfort properties of knitted fabrics was taken up.

Originality/value

This research work is focused on the thermal comfort parameters of knitted fabrics made from 100 per cent tencel yarn, 100 per cent bamboo yarn and tencel/bamboo blended yarns of different blend ratios.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 October 2022

Manoj Kumar Imrith, Satyadev Rosunee and Roshan Unmar

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is…

Abstract

Purpose

Lightweight, open construction cotton knitted fabrics generally do not impart good protection from solar ultraviolet radiation (UVR). As lightweight 100% cotton single jersey is highly cherished for summerwear, it is sine qua non to understand the structural parameters that effectively strike a good balance between UV protection and thermophysiological comfort of the wearer. Relatively heavy fabrics protect from UVR, but comfort is compromised because of waning porosity, increase in thickness and thermal insulation. The purpose of this paper is to engineer knits that will bestow maximum UV protection while preserving the thermophysiological comfort of the wearer.

Design/methodology/approach

In total, 27 cotton single jersey fabrics with different areal densities and yarn counts were selected. Ultraviolet protection factor (UPF) was calculated based on the work of Imrith (2022). To précis, the authors constructed a UV box to measure the UPF of fabrics, denoted as UPFB. UPFB data were correlated with AATCC 183-2004 and yielded high correlation, R2 0.977. It was concluded that UPF 50 corresponds to UPFB 94.3. Thermal comfort properties were measured on the Alambeta and water-vapour resistance on the Permetest. Linear programming (LP) was used to optimize UPFB and comfort. Linear optimization focused on maximizing UPFB while keeping the thermophysiological comfort and areal density as constraints.

Findings

The resulting linear geometrical and sensitivity analyses generated multiple technically feasible solutions of fabrics thickness and porosity that gave valid UPFB, thermal absorptivity and water-vapour and thermal resistance. Subsequently, an interactive optimization software was developed to predict the stitch length, tightness factor and yarn count for optimum UPFB from a given areal density. The predicted values were then used to knit seven 100% cotton single jersey fabrics and were tested for UV protection. All seven fabrics gave UPFB above the threshold, that is, higher than 94.3. The mathematical model demonstrated good correlations with the optimized parameters and experimental values.

Originality/value

The optimization software predicted the optimum UPFB reasonably well, starting from the fabric structural and constructional parameters. In addition, the models were developed as interactive user interfaces, which can be used by knitted fabric developers to engineer cotton knits for maximizing UV protection without compromising thermophysiological comfort. It has been demonstrated that LP is an efficient tool for the optimization and prediction of targeted knitted fabrics parameters.

Details

Research Journal of Textile and Apparel, vol. 27 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 27 July 2012

Roqaya Sadek

The purpose of this research is to study the effect of softener treatment on plain jersey fabrics with properties made of cotton and spandex yarn.

Abstract

Purpose

The purpose of this research is to study the effect of softener treatment on plain jersey fabrics with properties made of cotton and spandex yarn.

Design/methodology/approach

Samples with 100 percent cotton yarns, spandex yarns in alternating courses (half plating) and spandex yarns in every courses (full plating) were produced on a circular knitting machine where the two latter cases were produced at five different levels of spandex extension. After the dyeing process, fabrics were treated with fabric softener using two softener types (cationic and silicon) and all type two concentrations (3 percent, 6 percent) to evaluate the most appropriate softener type and concentration on fabric friction force, sewing needle penetration force and weight loss percent under different levels of spandex extension.

Findings

Results showed that silicon softener treatment results in high decreases in fabric sewing needle penetrating force, friction force and while treatment with cationic softener results in high decreases in weight loss percent for 100 percent cotton, half and full plating fabrics.

Originality/value

There is a growing need to study the effect of softeners when spandex yarns are used in the production of knitted fabric which results in high increase of stitch density. This research compares the effects of two different softener types at different concentrations on the properties of both plain jersey fabric produced from 100 percent cotton yarns and from cotton/spandex yarns with different stitch density.

Details

International Journal of Clothing Science and Technology, vol. 24 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 5 March 2024

Azita Asayesh and Fatemeh Kolahi Mahmoodi

Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the…

Abstract

Purpose

Pilling and abrasion resistance are two of the most important mechanical properties of the fabric that influence the appearance and performance of the fabric, particularly in the case of knitted fabrics. Since, these fabric features are affected by fabric structure the aim of present research is to investigate how utilizing miss stitches and tuck stitches in the fabric structure for design purposes will influence the pilling and abrasion resistance of interlock weft-knitted fabrics.

Design/methodology/approach

In this research, interlock fabrics with different number of miss or tuck stitches on successive Wales were produced and pilling performance and abrasion resistance of the fabrics were investigated.

Findings

The results revealed that increasing the number of miss/tuck stitches on successive Wales decreases the abrasion resistance and enhances the pilling tendency of the fabric. The presence of miss/tuck stitches on both sides of the fabric improves the abrasion resistance and pilling performance of the fabric compared to fabrics containing these stitches on one side of the fabric. Furthermore, the fabric resistance against abrasion and pilling is higher in fabrics consisting of miss stitches compared to fabrics consisting of tuck stitches.

Originality/value

The use of tuck and miss stitches in designing the weft-knitted fabrics is a common method for producing fabrics with variety of knit patterns. Since pilling and abrasion resistance of the fabric influence on its appearance and performance, and none of the previous research studied the pilling and abrasion resistance of interlock-knitted fabrics from the point of presence of tuck and miss stitches on successive Wales of the fabric, this subject has been surveyed in the present research.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 187