Search results

11 – 20 of 71
Article
Publication date: 23 November 2020

Gopal Priyadarshi and B.V. Rathish Kumar

In the past few years, Haar wavelet-based numerical methods have been applied successfully to solve linear and nonlinear partial differential equations. This study aims to propose…

Abstract

Purpose

In the past few years, Haar wavelet-based numerical methods have been applied successfully to solve linear and nonlinear partial differential equations. This study aims to propose a wavelet collocation method based on Haar wavelets to identify a parameter in parabolic partial differential equations (PDEs). As Haar wavelet is defined in a very simple way, implementation of the Haar wavelet method becomes easier than the other numerical methods such as finite element method and spectral method. The computational time taken by this method is very less because Haar matrices and Haar integral matrices are stored once and used for each iteration. In the case of Haar wavelet method, Dirichlet boundary conditions are incorporated automatically. Apart from this property, Haar wavelets are compactly supported orthonormal functions. These properties lead to a huge reduction in the computational cost of the method.

Design/methodology/approach

The aim of this paper is to reconstruct the source control parameter arises in quasilinear parabolic partial differential equation using Haar wavelet-based numerical method. Haar wavelets possess various properties, for example, compact support, orthonormality and closed form expression. The main difficulty with the Haar wavelet is its discontinuity. Therefore, this paper cannot directly use the Haar wavelet to solve partial differential equations. To handle this difficulty, this paper represents the highest-order derivative in terms of Haar wavelet series and using successive integration this study obtains the required term appearing in the problem. Taylor series expansion is used to obtain the second-order partial derivatives at collocation points.

Findings

An efficient and accurate numerical method based on Haar wavelet has been proposed for parameter identification in quasilinear parabolic partial differential equations. Numerical results are obtained from the proposed method and compared with the existing results obtained from various finite difference methods including Saulyev method. It is shown that the proposed method is superior than the conventional finite difference methods including Saulyev method in terms of accuracy and CPU time. Convergence analysis is presented to show the accuracy of the proposed method. An efficient algorithm is proposed to find the wavelet coefficients at target time.

Originality/value

The outcome of the paper would have a valuable role in the scientific community for several reasons. In the current scenario, the parabolic inverse problem has emerged as very important problem because of its application in many diverse fields such as tomography, chemical diffusion, thermoelectricity and control theory. In this paper, higher-order derivative is represented in terms of Haar wavelet series. In other words, we represent the solution in multiscale framework. This would enable us to understand the solution at various resolution levels. In the case of Haar wavelet, this paper can achieve a very good accuracy at very less resolution levels, which ultimately leads to huge reduction in the computational cost.

Details

Engineering Computations, vol. 38 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 2013

R.C. Mittal, Ram Jiwari and Kapil K. Sharma

The purpose of this paper is to propose a numerical method to solve time dependent Burgers' equation with appropriate initial and boundary conditions.

Abstract

Purpose

The purpose of this paper is to propose a numerical method to solve time dependent Burgers' equation with appropriate initial and boundary conditions.

Design/methodology/approach

The presence of the nonlinearity in the problem leads to severe difficulties in the solution approximation. In construction of the numerical scheme, quasilinearization is used to tackle the nonlinearity of the problem which is followed by semi discretization for spatial direction using differential quadrature method (DQM). Semi discretization of the problem leads to a system of first order initial value problems which are followed by fully discretization using RK4 scheme. The method is analyzed for stability and convergence.

Findings

The method is illustrated and compared with existing methods via numerical experiments and it is found that the proposed method gives better accuracy and is quite easy to implement.

Originality/value

The new scheme is developed by using some numerical schemes. The scheme is analyzed for stability and convergence. In support of predicted theory some test examples are solved using the presented method.

Article
Publication date: 29 March 2013

Alper Korkmaz and İdris Dağ

The purpose of this paper is to simulate numerical solutions of nonlinear Burgers' equation with two well‐known problems in order to verify the accuracy of the cubic B‐spline…

Abstract

Purpose

The purpose of this paper is to simulate numerical solutions of nonlinear Burgers' equation with two well‐known problems in order to verify the accuracy of the cubic B‐spline differential quadrature methods.

Design/methodology/approach

Cubic B‐spline differential quadrature methods have been used to discretize the Burgers' equation in space and the resultant ordinary equation system is integrated via Runge‐Kutta method of order four in time. Numerical results are compared with each other and some former results by calculating discrete root mean square and maximum error norms in each case. A matrix stability analysis is also performed by determining eigenvalues of the coefficient matrices numerically.

Findings

Numerical results show that differential quadrature methods based on cubic B‐splines generate acceptable solutions of nonlinear Burgers' equation. Constructing hybrid algorithms containing various basis to determine the weighting coefficients for higher order derivative approximations is also possible.

Originality/value

Nonlinear Burgers' equation is solved by cubic B‐spline differential quadrature methods.

Article
Publication date: 26 August 2014

Anjali Verma, Ram Jiwari and Satish Kumar

The purpose of this paper is to propose a numerical scheme based on forward finite difference, quasi-linearisation process and polynomial differential quadrature method to find…

Abstract

Purpose

The purpose of this paper is to propose a numerical scheme based on forward finite difference, quasi-linearisation process and polynomial differential quadrature method to find the numerical solutions of nonlinear Klein-Gordon equation with Dirichlet and Neumann boundary condition.

Design/methodology/approach

In first step, time derivative is discretised by forward difference method. Then, quasi-linearisation process is used to tackle the non-linearity in the equation. Finally, fully discretisation by differential quadrature method (DQM) leads to a system of linear equations which is solved by Gauss-elimination method.

Findings

The accuracy of the proposed method is demonstrated by several test examples. The numerical results are found to be in good agreement with the exact solutions and the numerical solutions exist in literature. The proposed scheme can be expended for multidimensional problems.

Originality/value

The main advantage of the present scheme is that the scheme gives very accurate and similar results to the exact solutions by choosing less number of grid points. Secondly, the scheme gives better accuracy than (Dehghan and Shokri, 2009; Pekmen and Tezer-Sezgin, 2012) by choosing less number of grid points and big time step length. Also, the scheme can be extended for multidimensional problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 September 2018

Neeraj Dhiman and Mohammad Tamsir

The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series…

Abstract

Purpose

The purpose of this paper is to present a modified form of trigonometric cubic B-spline (TCB) collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. Five examples are taken for analysis. The obtained results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs. The authors also carried out the stability analysis which proves that the method is unconditionally stable.

Design/methodology/approach

The authors present a modified form of TCB collocation method to solve nonlinear Fisher’s type equations. Taylor series expansion is used to linearize the nonlinear part of the problem. The authors also carried out the stability analysis.

Findings

The authors found that the proposed method results are better than those obtained by some numerical methods as well as exact solutions. It is noted that the modified form of TCB collocation method is an economical and efficient technique to approximate the solution PDEs.

Originality/value

The authors propose a new method, namely, modified form of TCB collocation method. In the authors’ best knowledge, aforesaid method is not proposed by any other author. The authors used this method to solve nonlinear Fisher’s type equations and obtained more accurate results than the results obtained by other methods.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 February 2017

Mohammad Heydari, Ghasem Barid Loghmani and Abdul-Majid Wazwaz

The main purpose of this paper is to implement the piecewise spectral-variational iteration method (PSVIM) to solve the nonlinear Lane-Emden equations arising in mathematical…

Abstract

Purpose

The main purpose of this paper is to implement the piecewise spectral-variational iteration method (PSVIM) to solve the nonlinear Lane-Emden equations arising in mathematical physics and astrophysics.

Design/methodology/approach

This method is based on a combination of Chebyshev interpolation and standard variational iteration method (VIM) and matching it to a sequence of subintervals. Unlike the spectral method and the VIM, the proposed PSVIM does not require the solution of any linear or nonlinear system of equations and analytical integration.

Findings

Some well-known classes of Lane-Emden type equations are solved as examples to demonstrate the accuracy and easy implementation of this technique.

Originality/value

In this paper, a new and efficient technique is proposed to solve the nonlinear Lane-Emden equations. The proposed method overcomes the difficulties arising in calculating complicated and time-consuming integrals and terms that are not needed in the standard VIM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 May 2016

J I Ramos

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods

Abstract

Purpose

The purpose of this paper is to both determine the effects of the nonlinearity on the wave dynamics and assess the temporal and spatial accuracy of five finite difference methods for the solution of the inviscid generalized regularized long-wave (GRLW) equation subject to initial Gaussian conditions.

Design/methodology/approach

Two implicit second- and fourth-order accurate finite difference methods and three Runge-Kutta procedures are introduced. The methods employ a new dependent variable which contains the wave amplitude and its second-order spatial derivative. Numerical experiments are reported for several temporal and spatial step sizes in order to assess their accuracy and the preservation of the first two invariants of the inviscid GRLW equation as functions of the spatial and temporal orders of accuracy, and thus determine the conditions under which grid-independent results are obtained.

Findings

It has been found that the steepening of the wave increase as the nonlinearity exponent is increased and that the accuracy of the fourth-order Runge-Kutta method is comparable to that of a second-order implicit procedure for time steps smaller than 100th, and that only the fourth-order compact method is almost grid-independent if the time step is on the order of 1,000th and more than 5,000 grid points are used, because of the initial steepening of the initial profile, wave breakup and solitary wave propagation.

Originality/value

This is the first study where an accuracy assessment of wave breakup of the inviscid GRLW equation subject to initial Gaussian conditions is reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 3/4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 July 2019

Michael Chapwanya, Robert Dozva and Gift Muchatibaya

This paper aims to design new finite difference schemes for the Lane–Emden type equations. In particular, the authors show that the schemes are stable with respect to the…

Abstract

Purpose

This paper aims to design new finite difference schemes for the Lane–Emden type equations. In particular, the authors show that the schemes are stable with respect to the properties of the equation. The authors prove the uniqueness of the schemes and provide numerical simulations to support the findings.

Design/methodology/approach

The Lane–Emden equation is a well-known highly nonlinear ordinary differential equation in mathematical physics. Exact solutions are known for a few parameter ranges and it is important that any approximation captures the properties of the equation it represent. For this reason, designing schemes requires a careful consideration of these properties. The authors apply the well-known nonstandard finite difference methods.

Findings

Several interesting results are provided in this work. The authors list these as follows. Two new schemes are designed. Mathematical proofs are provided to show the existence and uniqueness of the solution of the discrete schemes. The authors show that the proposed method can be extended to singularly perturbed equations.

Originality/value

The value of this work can be measured as follows. It is the first time such schemes have been designed for the kind of equations.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 April 2020

Neeraj Dhiman, Amit Chauhan, Mohammad Tamsir and Anand Chauhan

A collocation technique based on re-defined quintic B-splines over Crank-Nicolson is presented to solve the Fisher's type equation. We take three cases of aforesaid equation. The…

Abstract

Purpose

A collocation technique based on re-defined quintic B-splines over Crank-Nicolson is presented to solve the Fisher's type equation. We take three cases of aforesaid equation. The stability analysis and rate of convergence are also done.

Design/methodology/approach

The quintic B-splines are re-defined which are used for space integration. Taylor series expansion is applied for linearization of the nonlinear terms. The discretization of the problem gives up linear system of equations. A Gaussian elimination method is used to solve these systems.

Findings

Three examples are taken for analysis. The analysis gives guarantee that the present method provides much better results than previously presented methods in literature. The stability analysis and rate of convergence show that the method is unconditionally stable and quadratic convergent for Fisher's type equation. Moreover, the present method is simple and easy to implement, so it may be considered as an alternative method to solve PDEs.

Originality/value

This work is the original work of authors which is neither published nor submitted anywhere else for publication.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 September 2008

Randolph C. Rach

To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of…

1383

Abstract

Purpose

To provide a new proof of convergence of the Adomian decomposition series for solving nonlinear ordinary and partial differential equations based upon a thorough examination of the historical milieu preceding the Adomian decomposition method.

Design/methodology/approach

Develops a theoretical background of the Adomian decomposition method under the auspices of the Cauchy‐Kovalevskaya theorem of existence and uniqueness for solution of differential equations. Beginning from the concepts of a parametrized Taylor expansion series as previously introduced in the Murray‐Miller theorem based on analytic parameters, and the Banach‐space analog of the Taylor expansion series about a function instead of a constant as briefly discussed by Cherruault et al., the Adomian decompositions series and the series of Adomian polynomials are found to be a uniformly convergent series of analytic functions for the solution u and the nonlinear composite function f(u). To derive the unifying formula for the family of classes of Adomian polynomials, the author develops the novel notion of a sequence of parametrized partial sums as defined by truncation operators, acting upon infinite series, which induce these parametrized sums for simple discard rules and appropriate decomposition parameters. Thus, the defining algorithm of the Adomian polynomials is the difference of these consecutive parametrized partial sums.

Findings

The four classes of Adomian polynomials are shown to belong to a common family of decomposition series, which admit solution by recursion, and are derived from one unifying formula. The series of Adomian polynomials and hence the solution as computed as an Adomian decomposition series are shown to be uniformly convergent. Furthermore, the limiting value of the mth Adomian polynomial approaches zero as the index m approaches infinity for the prerequisites of the Cauchy‐Kovalevskaya theorem. The novel truncation operators as governed by discard rules are analogous to an ideal low‐pass filter, where the decomposition parameters represent the cut‐off frequency for rearranging a uniformly convergent series so as to induce the parametrized partial sums.

Originality/value

This paper unifies the notion of the family of Adomian polynomials for solving nonlinear differential equations. Further it presents the new notion of parametrized partial sums as a tool for rearranging a uniformly convergent series. It offers a deeper understanding of the elegant and powerful Adomian decomposition method for solving nonlinear ordinary and partial differential equations, which are of paramount importance in modeling natural phenomena and man‐made device performance parameters.

Details

Kybernetes, vol. 37 no. 7
Type: Research Article
ISSN: 0368-492X

Keywords

11 – 20 of 71