Search results

1 – 10 of 96
Article
Publication date: 12 January 2024

Gowtham G. and Jagan Raj R.

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their…

Abstract

Purpose

The purpose of this study is to find the suitable trajectory path of the Numerical model of the Quadcopter. Quadcopters are widely used in various applications due to their compact size and ease of assembly. Because they are quite unstable, autonomous control systems would be used to overcome this problem. Modelling autonomous control is predominant as the research scope faces challenges because of its highly non-linear, multivariable system with 6 degree of freedom.

Design/methodology/approach

Quadcopters with antonym systems can operate in an unknown environment by overcoming unexpected disturbances. The first objective when designing such a system is to design an accurate mathematical model to describe the dynamics of the system. Newton’s law of motion was used to build the mathematical model of the system.

Findings

Establishment of the mathematical model and the physics behind a four propeller drone for the frame TAROT 650 carbon was done. Simulink model was developed based on the mathematical model for simulating the complete dynamics of the drone as well as location and gusts were included to check the stability.

Originality/value

The control response of the system was simulated numerically results are discussed. The trajectory path was found. The phases with their own parameters can be used to implement the mathematical model for another type of quadcopter model and achieve quick development.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 14 June 2023

Raya A.K. Aswad and Bassim M.H. Jassim

This paper aims to introduce the usage of sensitivity analysis (SA) for the problem of faults identification in three-phase induction motors (IMs). These motors are susceptible to…

Abstract

Purpose

This paper aims to introduce the usage of sensitivity analysis (SA) for the problem of faults identification in three-phase induction motors (IMs). These motors are susceptible to different kinds of faults that should be detected in a proper time to keep the systems working in a safety environment.

Design/methodology/approach

One of the effective approaches for faults identifications, which is presented in the literature, is a model-based strategy. This strategy mainly depends on using a software model to make an identification decision. Therefore, this work intends to examine the model sensitivity towards variables’ variation. The SA toolbox of Matlab R2017b package is used for this purpose since the Matlab software is a well-known environment, and it is easy for a nonstatistical person to deal with it. As a study case, open-circuit and stator inter-turn faults in the stator windings of a three-phase IM have been chosen.

Findings

The results show that the model-based strategy is considerably speed up by up to 30% when neglecting the trivial model’s parameters with the same accurate identification decision as compared with the results of this strategy without using the SA.

Originality/value

The novelty of this work is summarized in devoting the usage of SA in the field of faults identification to enhance the speed of final decision.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2022

Taposh Kumar Roy and Md Habibullah

Predictive current control (PCC) of three-to-five-phase direct matrix converters (DMCs) is computationally expensive. For this reason, this study aims to consider a reduced number…

60

Abstract

Purpose

Predictive current control (PCC) of three-to-five-phase direct matrix converters (DMCs) is computationally expensive. For this reason, this study aims to consider a reduced number of switching states of DMC in PCC algorithm to predict the control objectives, such as output current control and input reactive power control.

Design/methodology/approach

The switching sequences which yield the voltage vectors of variable amplitude at a constant frequency in space are considered for the prediction and optimization step of PCC algorithm. For the selected voltage vectors, the phase angles of the output vectors are independent on the phase angles of the input vectors. In a three-to-five-phase DMC, there are 243 valid switching states. Among the switching states, only 91 states are considered using the aforementioned concept of variable amplitude output at a constant frequency. This reduced number of switching states simplifies the computational complexity of MPC based current control of three-to-five-phase DMC.

Findings

The computational complexity of the proposed PCC based DMC is lower than the all 243 vectors based PCC. The current total harmonic distortion, transient current response and input reactive power control for the simplified 91 vector based PCC are similar to the all 243 vectors based PCC.

Originality/value

A reduced number of switching sequence is considered for the prediction and optimization step of PCC algorithm. Hence, PCC algorithm can be sampled at a high frequency in real-time applications. Then, the performance of the PCC will be improved.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 January 2023

Tri Bien Minh, Hien Vo and Luan Thanh Hua

The main purpose of the study was mechanical designing, simulation and manufacturing process for a new model of octocopter V-frame and to achieve simple manufacturing with 3D…

Abstract

Purpose

The main purpose of the study was mechanical designing, simulation and manufacturing process for a new model of octocopter V-frame and to achieve simple manufacturing with 3D printing technology. Moreover, the octocopter PID controller was simulated on the Simulink environment to get performance on the roll and pitch angle control.

Design/methodology/approach

Octocopter is one kind of multirotor vehicle (a rotorcraft with more than two rotors), that has lately gained a lot of attention for both the scientific and commercial spheres. With a greater number of rotors, the multirotor is very maneuverable and robust. Multi-copter makes an important contribution to the technological revolution in the military, industry, transportation, mapping and especially agriculture. Nowadays, we are heading to the four-industrial revolutions as well as the new technological application in the agricultural field such as precision agriculture, mapping and surveillance. Due to recently advanced technology about sensors, electronics, 3D printing, battery with high performance, multi-copter can be manufactured at low cost.

Findings

The V-frame octocopter was chosen to design in this paper; it had better performance scores including high redundancy rotors, high payload capability and affordable cost than another multi-copter family. The V-frame octocopter increasing freedom field of view of the camera was considered to place the camera position in the front of the drone.

Research limitations/implications

For the future aspects, the mechanical structure of the octocopter could be improved by using more advanced metal 3D printing to produce the aluminum or titan alloy materials for lighter and more rigid compared with ABS material, and finally the assembly to the real test.

Originality/value

The study shows the new platform of the V-frame octocopter kinematics analysis, designed on the CAD software, with some important mechanical parts using FEM analysis to find the highest stress and displacement under high load applied, the result of all connecting the joints 3D printing part is completely safe. Mechanical parts were manufactured by using 3D printing technology and CNC milling. Moreover, the study has shown V-frame octocopter simulation based on Simulink using the second method Ziegler- Nichols to find suitable parameters of the PID controller for roll and pitch angle. Using the block simulation is good for implementing and fast checking the new algorithm when building the new platform of the robot.

Details

International Journal of Intelligent Unmanned Systems, vol. 11 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 22 February 2024

Subrat Kumar Barik, Smrutimayee Nanda, Padarbinda Samal and Rudranarayan Senapati

This paper aims to introduce a new fault protection scheme for microgrid DC networks with ring buses.

Abstract

Purpose

This paper aims to introduce a new fault protection scheme for microgrid DC networks with ring buses.

Design/methodology/approach

It is well recognized that the protection scheme in a DC ring bus microgrid becomes very complicated due to the bidirectional power flow. To provide reliable protection, the differential current signal is decomposed into several basic modes using adaptive variational mode decomposition (VMD). In this method, the mode number and the penalty factor are chosen optimally by using arithmetic optimization algorithm, yielding satisfactory decomposition results than the conventional VMD. Weighted Kurtosis index is used as the measurement index to select the sensitive mode, which is used to evaluate the discrete Teager energy (DTE) that indicates the occurrence of DC faults. For localizing cable faults, the current signals from the two ends are used on a sample-to-sample basis to formulate the state space matrix, which is solved by using generalized least squares approach. The proposed protection method is validated in MATLAB/SIMULINK by considering various test cases.

Findings

DTE is used to detect pole-pole and pole-ground fault and other disturbances such as high-impedance faults and series arc faults with a reduced detection time (10 ms) compared to some existing techniques.

Originality/value

Verification of this method is performed considering various test cases in MATLAB/SIMULINK platform yielding fast detection timings and accurate fault location.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 June 2022

Rajini V. and Margaret Amutha W.

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The…

Abstract

Purpose

The purpose of this paper is to carry out a detailed analysis of two port converter fed by Solar and wind sources during different operational modes by small signal modelling. The converter is fully characterized and simulated using Matlab/Simulink. The voltage and current waveforms along with their corresponding expressions describing the converter operation are presented in detail. Then the DC-averaged equivalent topology is derived using circuit averaging technique. A complete derivation of the power stage transfer functions relevant to the capacitor voltage loop, such as capacitor voltage to solar voltage and inductor current to wind input voltage is obtained.

Design/methodology/approach

Stability analysis is used to analyze the small deviations around the steady-state operating point which helps in modeling the closed loop converter parameters. This paper presents the analysis, modeling and control of two port Cuk-buck converter topology.

Findings

Based on the results, a control strategy is designed to manage the energy flow within the system. A lab-level prototype for Cuk-buck converter with PWM controller is implemented and tested under various input conditions to study the performance of the converter during seasonal changes. The simulation and experimental results showed that effective operation and control strategy of the hybrid power supply system managed to be achieved alongside its feasible outputs.

Practical implications

This analysis can be extended to all power electronic converters and will be useful for the design of controllers.

Social implications

An appropriate control design plays a key role in enhancing the overall performance of the system. Hence, this paper is intended to present in detail the small signal modeling of the Cuk-buck converter along with the control design for all the switching modes.

Originality/value

Though this type of converter topology has been discussed widely in literature, very scarce literature is available related to modeling and control design of the converter. A state-space averaging model of the converter followed by a type-II compensator design is described, and prototype design and experimental results are also presented.

Article
Publication date: 19 March 2024

Naseer Khan, Zeeshan Gohar, Faisal Khan and Faisal Mehmood

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and…

Abstract

Purpose

This study aims to offer a hybrid stand-alone system for electric vehicle (EV) charging stations (CS), an emerging power scheme due to the availability of renewable and environment-friendly energy sources. This paper presents the analysis of a photovoltaic (PV) with an adaptive neuro-fuzzy inference system (ANFIS) algorithm, solid oxide fuel cell (SOFC) and a battery storage scheme incorporated for EV CS in a stand-alone mode. In previous studies, either the hydrogen fuel of SOFC or the irradiance is controlled using artificial neural network. These parameters are not controlled simultaneously using an ANFIS-based approach. The ANFIS-based stand-alone hybrid system controlling both the fuel flow of SOFC and the irradiance of PV is discussed in this paper.

Design/methodology/approach

The ANFIS algorithm provides an efficient estimation of maximum power (MP) to the nonlinear voltage–current characteristics of a PV, integrated with a direct current–direct current (DC–DC) converter to boost output voltage up to 400 V. The issue of fuel starvation in SOFC due to load transients is also mitigated using an ANFIS-based fuel flow regulator, which robustly provides fuel, i.e. hydrogen per necessity. Furthermore, to ensure uninterrupted power to the CS, PV is integrated with a SOFC array, and a battery storage bank is used as a backup in the current scenario. A power management system efficiently shares power among the aforesaid sources.

Findings

A comprehensive simulation test bed for a stand-alone power system (PV cells and SOFC) is developed in MATLAB/Simulink. The adaptability and robustness of the proposed control paradigm are investigated through simulation results in a stand-alone hybrid power system test bed.

Originality/value

The simulation results confirm the effectiveness of the ANFIS algorithm in a stand-alone hybrid power system scheme.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2023

Bhanu Prakash Saripalli, Gagan Singh and Sonika Singh

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in…

Abstract

Purpose

Estimation of solar cell parameters, mathematical modeling and the actual performance analysis of photovoltaic (PV) cells at various ecological conditions are very important in the design and analysis of maximum power point trackers and power converters. This study aims to propose the analysis and modeling of a simplified three-diode model based on the manufacturer’s performance data.

Design/methodology/approach

A novel technique is presented to evaluate the PV cell constraints and simplify the existing equation using analytical and iterative methods. To examine the current equation, this study focuses on three crucial operational points: open circuit, short circuit and maximum operating points. The number of parameters needed to estimate these built-in models is decreased from nine to five by an effective iteration method, considerably reducing computational requirements.

Findings

The proposed model, in contrast to the previous complex nine-parameter three-diode model, simplifies the modeling and analysis process by requiring only five parameters. To ensure the reliability and accuracy of this proposed model, its results were carefully compared with datasheet values under standard test conditions (STC). This model was implemented using MATLAB/Simulink and validated using a polycrystalline solar cell under STC conditions.

Originality/value

The proposed three-diode model clearly outperforms the earlier existing two-diode model in terms of accuracy and performance, especially in lower irradiance settings, according to the results and comparison analysis.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 6 July 2023

Zakaria Mohamed Salem Elbarbary, Ahmed A. Alaifi, Saad Fahed Alqahtani, Irshad Mohammad Shaik, Sunil Kumar Gupta and Vijayakumar Gali

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective…

757

Abstract

Purpose

Switching power converters for photovoltaic (PV) applications with high gain are rapidly expanding. To obtain better voltage gain, low switch stress, low ripple and cost-effective converters, researchers are developing several topologies.

Design/methodology/approach

It was decided to use the particle swarm optimization approach for this system in order to compute the precise PI controller gain parameters under steady state and dynamic changing circumstances. A high-gain q- ZS boost converter is used as an intermittent converter between a PV and brushless direct current (BLDC) motor to attain maximum power point tracking, which also reduces the torque ripples. A MATLAB/Simulink environment has been used to build and test the positive output quadratic boost high gain converters (PQBHGC)-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. The simulation results show that the PQBHGC-3 topology is effective in comparison with other HG cell DC–DC converters in terms of efficiency, reduced ripples, etc. which is most suitable for PV-driven BLDC applications.

Findings

The simulation results have showed that the PQBHGC-3 gives better performance with minimum voltage ripple of 2V and current ripple of 0.4A which eventually reduces the ripples in the torque in a BLDC motor. Also, the efficiency for the suggested PQBHGC-3 for PV-based BLDC applications is the best with 99%.

Originality/value

This study is the first of its kind comparing the different topologies of PQBHGC-1, PQBHGC-8, PQBHGC-4 and PQBHGC-3 topologies to analyse their effectiveness in PV-driven BLDC motor applications. This study suggests that the PQBHGC-3 topology is most suitable in PV-driven BLDC applications.

Details

Frontiers in Engineering and Built Environment, vol. 4 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 28 February 2023

Yiming Zhan, Hao Chen, Mengyu Hua, Jinfu Liu, Hao He, Patrick Wheeler, Xiaodong Li and Vitor Fernao Pires

The purpose of this paper is to achieve the multi-objective optimization design of novel tubular switched reluctance motor (TSRM).

Abstract

Purpose

The purpose of this paper is to achieve the multi-objective optimization design of novel tubular switched reluctance motor (TSRM).

Design/methodology/approach

First, the structure and initial dimensions of TSRM are obtained based on design criteria and requirements. Second, the sensitivity analysis rules, process and results of TSRM are performed. Third, three optimization objectives are determined by the average electromagnetic force, smoothing coefficient and copper loss ratio. The analytic hierarchy process-entropy method-a technique for order preference by similarity to an ideal solution-grey relation analysis comprehensive evaluation algorithm is used to optimize TSRM. Finally, a prototype is manufactured, a hardware platform is built and static and dynamic experimental validations are carried out.

Findings

The sensitivity analysis reveals that parameters significantly impact the performance of TSRM. The results of multi-objective optimization show that the average electromagnetic force and smoothing coefficient after optimization are better than before, and the copper loss ratio reduces slightly. The experimental and simulated results of TSRM are consistent, which verifies the accuracy of TSRM.

Research limitations/implications

In this paper, only three optimization objectives are selected in the multi-objective optimization process. To improve the performance of TSRM, the heating characteristics, such as iron loss, can be considered as the optimization objective for a more comprehensive analysis of TSRM performance.

Originality/value

A novel motor structure is designed, combining the advantages of the TSRM and the linear motor. The established sensitivity analysis rules are scientific and suitable for the effects of various parameters on motor performance. The proposed multi-objective optimization algorithm is a comprehensive evaluation algorithm. It considers subjective weight and objective weight and fully uses the original data and the relational degree between the optimization objectives.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 96