Search results

1 – 10 of 48
Article
Publication date: 20 September 2022

Lalit Narendra Patil, Hrishikesh P. Khairnar and S.G. Bhirud

Electric vehicles are well known for a silent and smooth drive; however, their presence on the road is difficult to identify for road users who may be subjected to certain…

Abstract

Purpose

Electric vehicles are well known for a silent and smooth drive; however, their presence on the road is difficult to identify for road users who may be subjected to certain incidences. Although electric vehicles are free from exhaust emission gases, the wear particles coming out from disc brakes are still unresolved issues. Therefore, the purpose of the present paper is to introduce a smart eco-friendly braking system that uses signal processing and integrated technologies to eventually build a comprehensive driver assistance system.

Design/methodology/approach

The parameters obstacle identification, driver drowsiness, driver alcohol situation and heart rate were all taken into account. A contactless brake blending system has been designed while upgrading a rapid response. The implemented state flow rule-based decision strategy validated with the outcomes of a novel experimental setup.

Findings

The drowsiness state of drivers was successfully identified for the proposed control map and set up vindicated with the improvement in stopping time, atmospheric environment and increase in vehicle active safety regime.

Originality/value

The present study adopted a unique approach and obtained a brake blending system for improved braking performance as well as overall safety enhancement with rapid control of the vehicle.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 5 April 2024

Hung-pin Lai

The standard method to estimate a stochastic frontier (SF) model is the maximum likelihood (ML) approach with the distribution assumptions of a symmetric two-sided stochastic…

Abstract

The standard method to estimate a stochastic frontier (SF) model is the maximum likelihood (ML) approach with the distribution assumptions of a symmetric two-sided stochastic error v and a one-sided inefficiency random component u. When v or u has a nonstandard distribution, such as v follows a generalized t distribution or u has a χ2 distribution, the likelihood function can be complicated or untractable. This chapter introduces using indirect inference to estimate the SF models, where only least squares estimation is used. There is no need to derive the density or likelihood function, thus it is easier to handle a model with complicated distributions in practice. The author examines the finite sample performance of the proposed estimator and also compare it with the standard ML estimator as well as the maximum simulated likelihood (MSL) estimator using Monte Carlo simulations. The author found that the indirect inference estimator performs quite well in finite samples.

Article
Publication date: 15 September 2023

Suzan Alaswad and Sinan Salman

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively…

Abstract

Purpose

While steady-state analysis is useful, it does not consider the inherent transient characteristics of repairable systems' behavior, especially in systems that have relatively short life spans, or when their transient behavior is of special concern such as the motivating example used in this paper, military systems. Therefore, a maintenance policy that considers both transient and steady-state availability and aims to achieve the best trade-off between high steady-state availability and rapid stabilization is essential.

Design/methodology/approach

This paper studies the transient behavior of system availability under the Kijima Type II virtual age model. While such systems achieve steady-state availability, and it has been proved that deploying preventive maintenance (PM) can significantly improve its steady-state availability, this improvement often comes at the price of longer and increased fluctuating transient behavior, which affects overall system performance. The authors present a methodology that identifies the optimal PM policy that achieves the best trade-off between high steady-state availability and rapid stabilization based on cost-availability analysis.

Findings

When the proposed simulation-based optimization and cost analysis methodology is applied to the motivating example, it produces an optimal PM policy that achieves an availability–variability balance between transient and steady-state system behaviors. The optimal PM policy produces a notably lower availability coefficient of variation (by 11.5%), while at the same time suffering a negligible limiting availability loss of only 0.3%. The new optimal PM policy also provides cost savings of about 5% in total maintenance cost. The performed sensitivity analysis shows that the system's optimal maintenance cost is sensitive to the repair time, the shape parameter of the Weibull distribution and the downtime cost, but is robust with respect to changes in the remaining parameters.

Originality/value

Most of the current maintenance models emphasize the steady-state behavior of availability and neglect its transient behavior. For some systems, using steady-state availability as the sole metric for performance is not adequate, especially in systems that have relatively short life spans or when their transient behavior affects the overall performance. However, little work has been done on the transient analysis of such systems. In this paper, the authors aim to fill this gap by emphasizing such systems and applications where transient behavior is of critical importance to efficiently optimize system performance. The authors use military systems as a motivating example.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 2
Type: Research Article
ISSN: 0265-671X

Keywords

Open Access
Article
Publication date: 25 March 2024

Florian Follert and Werner Gleißner

From the buying club’s perspective, the transfer of a player can be interpreted as an investment from which the club expects uncertain future benefits. This paper aims to develop…

Abstract

Purpose

From the buying club’s perspective, the transfer of a player can be interpreted as an investment from which the club expects uncertain future benefits. This paper aims to develop a decision-oriented approach for the valuation of football players that could theoretically help clubs determine the subjective value of investing in a player to assess its potential economic advantage.

Design/methodology/approach

We build on a semi-investment-theoretical risk-value model and elaborate an approach that can be applied in imperfect markets under uncertainty. Furthermore, we illustrate the valuation process with a numerical example based on fictitious data. Due to this explicitly intended decision support, our approach differs fundamentally from a large part of the literature, which is empirically based and attempts to explain observable figures through various influencing factors.

Findings

We propose a semi-investment-theoretical valuation approach that is based on a two-step model, namely, a first valuation at the club level and a final calculation to determine the decision value for an individual player. In contrast to the previous literature, we do not rely on an econometric framework that attempts to explain observable past variables but rather present a general, forward-looking decision model that can support managers in their investment decisions.

Originality/value

This approach is the first to show managers how to make an economically rational investment decision by determining the maximum payable price. Nevertheless, there is no normative requirement for the decision-maker. The club will obviously have to supplement the calculus with nonfinancial objectives. Overall, our paper can constitute a first step toward decision-oriented player valuation and for theoretical comparison with practical investment decisions in football clubs, which obviously take into account other specific sports team decisions.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 9 January 2024

Zhuoyu Zhang, Lijia Zhong, Mingwei Lin, Ri Lin and Dejun Li

Docking technology plays a crucial role in enabling long-duration operations of autonomous underwater vehicles (AUVs). Visual positioning solutions alone are susceptible to…

Abstract

Purpose

Docking technology plays a crucial role in enabling long-duration operations of autonomous underwater vehicles (AUVs). Visual positioning solutions alone are susceptible to abnormal drift values due to the challenging underwater optical imaging environment. When an AUV approaches the docking station, the absolute positioning method fails if the AUV captures an insufficient number of tracers. This study aims to to provide a more stable absolute position visual positioning method for underwater terminal visual docking.

Design/methodology/approach

This paper presents a six-degree-of-freedom positioning method for AUV terminal visual docking, which uses lights and triangle codes. The authors use an extended Kalman filter to fuse the visual calculation results with inertial measurement unit data. Moreover, this paper proposes a triangle code recognition and positioning algorithm.

Findings

The authors conducted a simulation experiment to compare the underwater positioning performance of triangle codes, AprilTag and Aruco. The results demonstrate that the implemented triangular code reduces the running time by over 70% compared to the other two codes, and also exhibits a longer recognition distance in turbid environments. Subsequent experiments were carried out in Qingjiang Lake, Hubei Province, China, which further confirmed the effectiveness of the proposed positioning algorithm.

Originality/value

This fusion approach effectively mitigates abnormal drift errors stemming from visual positioning and cumulative errors resulting from inertial navigation. The authors also propose a triangle code recognition and positioning algorithm as a supplementary approach to overcome the limitations of tracer light positioning beacons.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 March 2024

Qianmai Luo, Chengshuang Sun, Ying Li, Zhenqiang Qi and Guozong Zhang

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the…

Abstract

Purpose

With increasing complexity of construction projects and new construction processes and methods are adopted, more safety hazards are emerging at construction sites, requiring the application of the modern risk management methods. As an emerging technology, digital twin has already made valuable contributions to safety risk management in many fields. Therefore, exploring the application of digital twin technology in construction safety risk management is of great significance. The purpose of this study is to explore the current research status and application potential of digital twin technology in construction safety risk management.

Design/methodology/approach

This study followed a four-stage literature processing approach as outlined in the systematic literature review procedure guidelines. It then combined the quantitative analysis tools and qualitative analysis methods to organize and summarize the current research status of digital twin technology in the field of construction safety risk management, analyze the application of digital twin technology in construction safety risk management and identify future research trends.

Findings

The research findings indicate that the application of digital twin technology in the field of construction safety risk management is still in its early stages. Based on the results of the literature analysis, this paper summarizes five aspects of digital twin technology's application in construction safety risk management: real-time monitoring and early warning, safety risk prediction and assessment, accident simulation and emergency response, safety risk management decision support and safety training and education. It also proposes future research trends based on the current research challenges.

Originality/value

This study provides valuable references for the extended application of digital twin technology and offers a new perspective and approach for modern construction safety risk management. It contributes to the enhancement of the theoretical framework for construction safety risk management and the improvement of on-site construction safety.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 16 April 2024

Ismael Castillo-Ortiz, Minwoo Lee, Scott Taylor and Diego Bufquin

This paper aims to uncover patterns of Mexican craft beer consumers and guide companies’ decisions in the creation of new products, marketing strategies, advertising and promotion…

Abstract

Purpose

This paper aims to uncover patterns of Mexican craft beer consumers and guide companies’ decisions in the creation of new products, marketing strategies, advertising and promotion to increase craft beer sales and contribute to faster growth.

Design/methodology/approach

This is a conjoint analysis with a selection of attributes for new or renewed products, marginal disposition to pay for particular characteristics through brand-specific choice-based design, and market simulation.

Findings

This paper clearly demonstrates consumers’ preferences and willingness to pay in Mexico, with a cutting-edge market research technique combining the prioritization of preferred craft beer characteristics, and the price consumers are willing to pay for such product characteristics.

Research limitations/implications

The study's sample size of 501 responses is relatively small compared to the total number of craft beer consumers in Mexico. To enhance the validity and reliability of the findings, future studies should aim to obtain larger samples and compare their results with those of this study.

Practical implications

This study has important implications for craft beer producers, allowing them to develop targeted craft beers with appealing attributes for Mexican consumers, such as color, aroma intensity, alcohol degree intensity, bitterness, foam level and price.

Social implications

This study's market forecasting simulation technique is based on assumptions of consumer behavior and market dynamics. Although relevant variables were considered, unanticipated external factors or market changes could impact the forecasts' accuracy. This will allow for a more comprehensive understanding of craft beer consumer preferences in different markets and enhance the reliability of forecasting techniques.

Originality/value

This paper informs craft beer producers by providing valuable knowledge on customers’ preferences and willingness to pay to enhance craft beer companies’ product development processes.

Details

International Journal of Wine Business Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1751-1062

Keywords

Article
Publication date: 28 September 2023

Vicente-Segundo Ruiz-Jacinto, Karina-Silvana Gutiérrez-Valverde, Abrahan-Pablo Aslla-Quispe, José-Manuel Burga-Falla, Aldo Alarcón-Sucasaca and Yersi-Luis Huamán-Romaní

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite…

Abstract

Purpose

This paper aims to present the novel stacked machine learning approach (SMLA) to estimate low-cycle fatigue (LCF) life of SAC305 solder across structural parts. Using the finite element simulation (FEM) and continuous damage mechanics (CDM) model, a fatigue life database is built. The stacked machine learning (ML) model's iterative optimization during training enables precise fatigue predictions (2.41% root mean square error [RMSE], R2 = 0.975) for diverse structural components. Outliers are found in regression analysis, indicating potential overestimation for thickness transition specimens with extended lifetimes and underestimation for open-hole specimens. Correlations between fatigue life, stress factors, nominal stress and temperature are unveiled, enriching comprehension of LCF, thus enhancing solder behavior predictions.

Design/methodology/approach

This paper introduces stacked ML as a novel approach for estimating LCF life of SAC305 solder in various structural parts. It builds a fatigue life database using FEM and CDM model. The stacked ML model iteratively optimizes its structure, yielding accurate fatigue predictions (2.41% RMSE, R2 = 0.975). Outliers are observed: overestimation for thickness transition specimens and underestimation for open-hole ones. Correlations between fatigue life, stress factors, nominal stress and temperature enhance predictions, deepening understanding of solder behavior.

Findings

The findings of this paper highlight the successful application of the SMLA in accurately estimating the LCF life of SAC305 solder across diverse structural components. The stacked ML model, trained iteratively, demonstrates its effectiveness by producing precise fatigue lifetime predictions with a RMSE of 2.41% and an “R2” value of 0.975. The study also identifies distinct outlier behaviors associated with different structural parts: overestimations for thickness transition specimens with extended fatigue lifetimes and underestimations for open-hole specimens. The research further establishes correlations between fatigue life, stress concentration factors, nominal stress and temperature, enriching the understanding of solder behavior prediction.

Originality/value

The authors confirm the originality of this paper.

Details

Soldering & Surface Mount Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 14 December 2023

Swapnil Narayan Rajmane and Shaligram Tiwari

This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and…

Abstract

Purpose

This study aims to perform three-dimensional numerical computations for blood flow through a double stenosed carotid artery. Pulsatile flow with Womersley number (Wo) of 4.65 and Reynolds number (Re) of 425, based on the diameter of normal artery and average velocity of inlet pulse, was considered.

Design/methodology/approach

Finite volume method based ANSYS Fluent 20.1 was used for solving the governing equations of three-dimensional, laminar, incompressible and non-Newtonian blood flow. A high-quality grid with sufficient refinement was generated using ICEM CFD 20.1. The time-averaged flow field was captured to investigate the effect of severity and eccentricity on the lumen flow characteristics.

Findings

The results show that an increase in interspacing between blockages brings shear layer instability within the region between two blockages. The velocity profile and wall shear stress distribution are found to be majorly influenced by eccentricity. On the other hand, their peak magnitude is found to be primarily influenced by severity. Results have also demonstrated that the presence of eccentricity in stenosis would assist in flow development.

Originality/value

Variation in severity and interspacing was considered with a provision of eccentricity equal to 10% of diameter. Eccentricity refers to the offset between the centreline of stenosis and the centreline of normal artery. For the two blockages, severity values of 40% and 60% based on diameter reduction were permuted, giving rise to four combinations. For each combination, three values of interspacing in the multiples of normal artery diameter (D), viz. 4D, 6D and 8D were considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 January 2024

Md. Tareq Hossain Khondoker, Md. Mehrab Hossain and Ayan Saha

Due to its longer length compared to other construction materials and distinctive stacking patterns, obtaining construction steel bars in congested construction sites with limited…

Abstract

Purpose

Due to its longer length compared to other construction materials and distinctive stacking patterns, obtaining construction steel bars in congested construction sites with limited storage capacity becomes challenging. Lack of storage space in crowded places prompts the need for building steel bar storage choice optimization. Therefore, this study aims to optimize the construction steel bar procurement plan by providing when and how much rebar to order and how to stack different sizes of rebar considering limited storage capacity.

Design/methodology/approach

A novel approach has been presented in this paper by integrating 4D building information modelling (BIM) and mixed-integer linear programming (MILP). This technique uses BIM to retrieve material quantities, including rebar, during the design phase. Following that, activities are scheduled depending on the duration determined by crew productivity data and material quantity. Then, based on the prior price, the price of each unit of rebar is projected for the duration of construction using the exponential smoothing method. After that, the MILP approach is used to generate an optimal steel bar procurement plan for limited storage space following the scheduled rebar-related operations.

Findings

The developed strategy minimizes overall procurement costs and ensures the storage of rebar as per standard guidelines. An optimal rebar procurement and storage plan to construct a six-storied RC frame has been presented in this paper as a demonstrative example to show the effectiveness of the proposed method.

Originality/value

This work partially satisfies a long-sought research need for establishing a comprehensive construction steel bar procurement system, making it a very useful source of information for practitioners and researchers. The proposed method can be used to minimize a key performance limitation that the conventional rebar procurement practice for crowded building sites may experience.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 48