Search results

1 – 10 of 262
Article
Publication date: 24 April 2024

Hangyue Zhang, Yanchu Yang and Rong Cai

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further…

Abstract

Purpose

This paper aims to present numerical simulations for a series of flight processes for the postlaunching stage of the “balloon-borne UAV system.” It includes the balloon further ascent motion after airborne launching. In terms of unmanned aerial vehicles (UAVs), the tailspin state and the charge-out process with an anti-tailspin parachute-assisted suspending are analyzed. Then, the authors conduct trajectory optimization simulations for the long-distance gliding process.

Design/methodology/approach

The balloon kinematics model and the parachute Kane multibody dynamic model are established. Using steady-state tailspin to reduced-order analysis and achieving change-out simulation by parachute suspension dynamic model. A reentry optimization control problem is developed and the Radau pseudo-spectral method is used to calculate the glide trajectory.

Findings

The established dynamic model and trajectory optimization method can effectively simulate the motion process of balloons and UAVs. The system mass reduction for launching UAVs will not cause damage to the balloon structure. The anti-tailspin parachute can reduce the UAV attack angles effectively. The UAV can glide to the designated target position by adjusting the attack angle and sideslip angle. The farthest flight distance after launching from 20 km height is 94 km and the gliding time is 40 min, which demonstrates the potential application advantage of high-altitude launching.

Practical implications

The research content and related conclusions of this article achieve a closed-loop analysis of the flight mission chain for the “balloon-borne UAV system,” which provides simulation references for relevant balloon launching experiments.

Originality/value

This paper establishes a complete set of numerical simulation models and can effectively analyze various postlaunching behaviors.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 April 2024

Aymen Khadr

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the…

Abstract

Purpose

This paper focuses on the application of a robotic technique for modeling a three-wheeled mobile robot (WMR), considering it as a multibody polyarticulated system. Then the dynamic behavior of the developed model is verified using a physical model obtained by Simscape Multibody.

Design/methodology/approach

Firstly, a geometric model is developed using the modified Denavit–Hartenberg method. Then the dynamic model is derived using the algorithm of Newton–Euler. The developed model is performed for a three-wheeled differentially driven robot, which incorporates the slippage of wheels by including the Kiencke tire model to take into account the interaction of wheels with the ground. For the physical model, the mobile robot is designed using Solidworks. Then it is exported to Matlab using Simscape Multibody. The control of the WMR for both models is realized using Matlab/Simulink and aims to ensure efficient tracking of the desired trajectory.

Findings

Simulation results show a good similarity between the two models and verify both longitudinal and lateral behaviors of the WMR. This demonstrates the effectiveness of the developed model using the robotic approach and proves that it is sufficiently precise for the design of control schemes.

Originality/value

The motivation to adopt this robotic approach compared to conventional methods is the fact that it makes it possible to obtain models with a reduced number of operations. Furthermore, it allows the facility of implementation by numerical or symbolical programming. This work serves as a reference link for extending this methodology to other types of mobile robots.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 29 March 2024

Zhuoer Yao, Zi Kan, Daochun Li, Haoyuan Shao and Jinwu Xiang

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal…

Abstract

Purpose

The purpose of this paper is to solve the challenging problem of automatic carrier landing with the presence of environmental disturbances. Therefore, a global fast terminal sliding mode control (GFTSMC) method is proposed for automatic carrier landing system (ACLS) to achieve safe carrier landing control.

Design/methodology/approach

First, the framework of ACLS is established, which includes flight glide path model, guidance model, approach power compensation system and flight controller model. Subsequently, the carrier deck motion model and carrier air-wake model are presented to simulate the environmental disturbances. Then, the detailed design steps of GFTSMC are provided. The stability analysis of the controller is proved by Lyapunov theorems and LaSalle’s invariance principle. Furthermore, the arrival time analysis is carried out, which proves the controller has fixed time convergence ability.

Findings

The numerical simulations are conducted. The simulation results reveal that the proposed method can guarantee a finite convergence time and safe carrier landing under various conditions. And the superiority of the proposed method is further demonstrated by comparative simulations and Monte Carlo tests.

Originality/value

The GFTSMC method proposed in this paper can achieve precise and safe carrier landing with environmental disturbances, which has important referential significance to the improvement of ACLS controller designs.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

36

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 9 February 2024

Armando Calabrese, Antonio D'Uffizi, Nathan Levialdi Ghiron, Luca Berloco, Elaheh Pourabbas and Nathan Proudlove

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Abstract

Purpose

The primary objective of this paper is to show a systematic and methodological approach for the digitalization of critical clinical pathways (CPs) within the healthcare domain.

Design/methodology/approach

The methodology entails the integration of service design (SD) and action research (AR) methodologies, characterized by iterative phases that systematically alternate between action and reflective processes, fostering cycles of change and learning. Within this framework, stakeholders are engaged through semi-structured interviews, while the existing and envisioned processes are delineated and represented using BPMN 2.0. These methodological steps emphasize the development of an autonomous, patient-centric web application alongside the implementation of an adaptable and patient-oriented scheduling system. Also, business processes simulation is employed to measure key performance indicators of processes and test for potential improvements. This method is implemented in the context of the CP addressing transient loss of consciousness (TLOC), within a publicly funded hospital setting.

Findings

The methodology integrating SD and AR enables the detection of pivotal bottlenecks within diagnostic CPs and proposes optimal corrective measures to ensure uninterrupted patient care, all the while advancing the digitalization of diagnostic CP management. This study contributes to theoretical discussions by emphasizing the criticality of process optimization, the transformative potential of digitalization in healthcare and the paramount importance of user-centric design principles, and offers valuable insights into healthcare management implications.

Originality/value

The study’s relevance lies in its ability to enhance healthcare practices without necessitating disruptive and resource-intensive process overhauls. This pragmatic approach aligns with the imperative for healthcare organizations to improve their operations efficiently and cost-effectively, making the study’s findings relevant.

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 24 April 2024

Mohsen Jami, Hamidreza Izadbakhsh and Alireza Arshadi Khamseh

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic…

Abstract

Purpose

This study aims to minimize the cost and time of blood delivery in the whole blood supply chain network (BSCN) in disaster conditions. In other words, integrating all strategic, tactical and operational decisions of three levels of blood collection, processing and distribution leads to satisfying the demand at the right time.

Design/methodology/approach

This paper proposes an integrated BSCN in disaster conditions to consider four categories of facilities, including temporary blood collection centers, field hospitals, main blood processing centers and medical centers, to optimize demand response time appropriately. The proposed model applies the location of all permanent and emergency facilities in three levels: blood collection, processing and distribution. Other essential decisions, including multipurpose facilities, emergency transportation, inventory and allocation, were also used in the model. The LP metric method is applied to solve the proposed bi-objective mathematical model for the BSCN.

Findings

The findings show that this model clarifies its efficiency in the total cost and blood delivery time reduction, which results in a low carbon transmission of the blood supply chain.

Originality/value

The researchers proposed an integrated BSCN in disaster conditions to minimize the cost and time of blood delivery. They considered multipurpose capabilities for facilities (e.g. field hospitals are responsible for the three purposes of blood collection, processing and distribution), and so locating permanent and emergency facilities at three levels of blood collection, processing and distribution, support facilities, emergency transportation and traffic on the route with pollution were used to present a new model.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 April 2024

Yiwei Zhang, Daochun Li, Zi Kan, Zhuoer Yao and Jinwu Xiang

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work…

Abstract

Purpose

This paper aims to propose a novel control scheme and offer a control parameter optimizer to achieve better automatic carrier landing. Carrier landing is a challenging work because of the severe sea conditions, high demand for accuracy and non-linearity and maneuvering coupling of the aircraft. Consequently, the automatic carrier landing system raises the need for a control scheme that combines high robustness, rapidity and accuracy. In addition, to exploit the capability of the proposed control scheme and alleviate the difficulty of manual parameter tuning, a control parameter optimizer is constructed.

Design/methodology/approach

A novel reference model is constructed by considering the desired state and the actual state as constrained generalized relative motion, which works as a virtual terminal spring-damper system. An improved particle swarm optimization algorithm with dynamic boundary adjustment and Pareto set analysis is introduced to optimize the control parameters.

Findings

The control parameter optimizer makes it efficient and effective to obtain well-tuned control parameters. Furthermore, the proposed control scheme with the optimized parameters can achieve safe carrier landings under various severe sea conditions.

Originality/value

The proposed control scheme shows stronger robustness, accuracy and rapidity than sliding-mode control and Proportion-integration-differentiation (PID). Also, the small number and efficiency of control parameters make this paper realize the first simultaneous optimization of all control parameters in the field of flight control.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 9 April 2024

Krisztina Demeter, Levente Szász, Béla-Gergely Rácz and Lehel-Zoltán Györfy

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly…

Abstract

Purpose

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly, business performance. With the emergence of Industry 4.0 (I4.0) technologies, manufacturing companies can use a wide variety of advanced manufacturing technologies (AMT) to build an efficient and effective production system. Nevertheless, the literature offers little guidance on how these technologies, including novel I4.0 technologies, should be combined in practice and how these combinations might have a different impact on performance.

Design/methodology/approach

Using a survey study of 165 manufacturing plants from 11 different countries, we use factor analysis to empirically derive three distinct manufacturing technology bundles and structural equation modeling to quantify their relationship with operations and business performance.

Findings

Our findings support an evolutionary rather than a revolutionary perspective. I4.0 technologies build on traditional manufacturing technologies and do not constitute a separate direction that would point towards a fundamental digital transformation of companies within our sample. Performance effects are rather weak: out of the three technology bundles identified, only “automation and robotization” have a positive influence on cost efficiency, while “base technologies” and “data-enabled technologies” do not offer a competitive advantage, neither in terms of cost nor in terms of differentiation. Furthermore, while the business performance impact is positive, it is quite weak, suggesting that financial returns on technology investments might require longer time periods.

Originality/value

Relying on a complementarity approach, our research offers a novel perspective on technology implementation in the I4.0 era by investigating novel and traditional manufacturing technologies together.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 11 May 2023

Helen Crompton, Mildred V. Jones, Yaser Sendi, Maram Aizaz, Katherina Nako, Ricardo Randall and Eric Weisel

The purpose of this study is to determine what technological strategies were used within each of the phases of the ADDIE framework when developing content for professional…

638

Abstract

Purpose

The purpose of this study is to determine what technological strategies were used within each of the phases of the ADDIE framework when developing content for professional training. The study also examined the affordances of those technologies in training.

Design/methodology/approach

A PRISMA systematic review methodology (Moher et al., 2015) was utilized to answer the four questions guiding this study. Specifically, the PRISMA extension Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Protocols (PRISMA-P, Moher et al., 2015) was used to direct each stage of the research, from the literature review to the conclusion. In addition, the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA principles; Liberati et al., 2009) are used to guide the article selection process.

Findings

The findings reveal that the majority of the studies were in healthcare (36%) and education (24%) and used an online format (65%). There was a wide distribution of ADDIE used with technology across the globe. The coding for the benefits of technology use in the development of the training solution revealed four trends: 1) usability, 2) learning approaches, 3) learner experience and 4) financial.

Research limitations/implications

This systematic review only examined articles published in English, which may bias the findings to a Western understanding of how technology is used within the ADDIE framework. Furthermore, the study examined only peer-review academic articles from scholarly journals and conferences. While this provided a high level of assurance about the quality of the studies, it does not include other reports directly from training providers and other organizations.

Practical implications

These findings can be used as a springboard for training providers, scholars, funders and practitioners, providing rigorous insight into how technology has been used within the ADDIE framework, the types of technology, and the benefits of using technology. This insight can be used when designing future training solutions with a better understanding of how technology can support learning.

Social implications

This study provides insight into the uses of technology in training. Many of these findings and uses of technology within ADDIE can also transfer to other aspects of society.

Originality/value

This study is unique in that it provides the scholarly community with the first systematic review to examine what technological strategies were used within each of the phases of the ADDIE structure and how these technologies provided benefits to developing a training solution.

Details

European Journal of Training and Development, vol. 48 no. 3/4
Type: Research Article
ISSN: 2046-9012

Keywords

1 – 10 of 262