Search results

1 – 10 of 742
Article
Publication date: 8 April 2014

Ningning Hu, Jiguang Han and Bo Hu

– The purpose of this paper is to study the effect of silver (Ag) precursor on friction and wear.

Abstract

Purpose

The purpose of this paper is to study the effect of silver (Ag) precursor on friction and wear.

Design/methodology/approach

Thermogravimetric analysis of the oil with Ag precursor and X-ray diffraction of the decomposition product of the Ag complex were performed. The tribological behavior was evaluated on a UMT-3M Tribometer (CETR) using pure military-grade oil lubricant and the prepared lubricant at room temperature and at 300°C. Energy-dispersive spectroscopy of the chemical composition on the wear scar was performed.

Findings

When there is 1 weight per cent Ag precursor in the lubricant, the coefficient friction reduces by about 8 per cent at room temperature and by about 14 per cent at 300°C, and the wear probability also decreases, from moderate wear to mild wear at 300°C. There were more productions which could form metal Ag boundary films possessing low shearing stress and excellent lubricity at 300°C.

Originality/value

Ag precursors used as additives in a military-grade oil lubricant and excellent lubricity found at high temperature.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 January 2022

Xiuheng Zhang, Ningning Hu, Tianchi Chen and Songquan Wang

This study aims to prevent the sharp decline in the load-carrying capacity of lubricating oil film under harsh conditions of abrupt changes in friction interface temperature…

Abstract

Purpose

This study aims to prevent the sharp decline in the load-carrying capacity of lubricating oil film under harsh conditions of abrupt changes in friction interface temperature, which is a major challenge in lubrication technology.

Design/methodology/approach

In this paper, we synthesized a series of silver pyrazole methylpyridine complexes containing a high metal concentration and minimal supporting organic ligands (complex 1 [Ag(LMe)]2(BF4)2, complex 2 [Ag(Li-Pr)n](BF4)n and complex 3 [Ag(LMe)(NO3)]2). The thermal decompose behavior of as-prepared silver complex was investigated by thermogravimetric analysis and X-ray photoelectron spectrometry (XPS). Four-ball friction testers were used to evaluate the friction and wear properties of lubricating oil in the temperature ranges associated with the operation of modern heavy machinery.

Findings

The complex decomposed silver particles at high-temperature, which could fill the pits on the friction surface, change the wear form of the friction pair and reduce the roughness of the friction surface. Reduction in both friction coefficients and wear scar diameters was obtained by adding silver complexes in oil. The lubricating oil, with the additive content of 1.5 Wt.%, has the best tribological performance, moreover, the lubricating performance of the silver complexes in oil were correlated with their concentration and thermal decomposed temperatures, respectively.

Originality/value

As a result, a series of silver pyrazole methylpyridine complexes as oil additives can support friction and wear reduction under abrupt high-temperature conditions are intended to be a controllable backup lubricant additive.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2022

K. M. Faridul Hasan, Haona Wang, Sakil Mahmud, Ashraful Islam, Md. Ahsan Habib and Cao Genyang

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an…

Abstract

Purpose

Functionalization of organic cotton fabrics (OCFs) by in situ deposition of chitosan reduced-stabilized silver nanoparticles (AgNPs). No other toxic chemicals used to warrant an ecofriendly synthesis protocol. Human toxicity of silver systematically avoided to use as textile clothing. Primary colors (nearly-red, yellow and blue) were imparted on OCFs via localized surface plasmon resonance (LSPR) of AgNPs. Decent mechanical properties and laundering durability in terms of antibacterial/fastness test improved mechanical properties.

Design/methodology/approach

Silver nanoparticles can be synthesized by using silver nitrate along with commercially available chitosan. Due to the surface LSPR property of silver nanoparticles, it exhibits versatile colors depending on the synthesizing procedures. The coloration occurs due to the electrostatic interaction between the AgNPs and chitosan-treated OCF. The nanotreated fabrics provide excellent mechanical properties with improved antibacterial effects.

Findings

X-ray fluorescence (XRF) analysis quantifies the developed materials in the substrates. Scanning electron microscopy (SEM) characterization indicates the appearance and morphologies of silver nanoparticles into the fabric surface after the coloration process. It proves that the treated cotton knit fabric exhibits the LSPR optical features of AgNPs. The antibacterial and mechanical properties confirm the improved functionality of products.

Originality/value

Improved mechanical properties, antibacterial performances and coloration effects on organic cotton substrates in terms of chitosan-mediated nanosilver are not yet studied.

Details

International Journal of Clothing Science and Technology, vol. 34 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 29 July 2022

Khaled Mostafa, Mohamed Ramadan and Azza El-Sanabary

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly…

Abstract

Purpose

This study aims to address a comprehensive and integrated investigations pertaining to the preparation of AgNPs with well-defined nano-sized scale using the aforementioned poly (meth acrylic acid [MAA])–chitosan graft copolymer, which is cheap, nontoxic, biodegradable and biocompatible agent as a substitute for the traditionally used toxic reducing agents.

Design/methodology/approach

AgNPs are prepared under a range of conditions, containing silver nitrate and poly (MAA)–chitosan graft copolymer concentrations, time, temperature and pH of the preparation medium. To classify AgNPs obtained under the various conditions, ultraviolet–visible spectroscopy spectra and transmission electron microscopy images are used for characterization of AgNPs instrumentally in addition to the visual color change throughout the work. The work was further extended to study the application of the so prepared AgNPs on cotton fabric to see their suitability as antibacterial agent as well as their durability after certain washing cycles.

Findings

According to the current investigation, the optimal conditions for AgNPs formation of nearly 3–15 nm in size are 5 g/l, poly (MAA)–chitosan graft copolymer and 300 ppm AgNO3 in addition to carrying out the reaction at 60°C for 30 min at pH 12. Besides, the application of the so prepared AgNPs on cotton fabric displayed a substantial reduction in antibacterial efficiency against gram-positive and gram-negative bacteria estimated even after 10 washing cycles in comparison with untreated one.

Originality/value

To the best of the authors’ information, no comprehensive study of the synthesis of AgNPs using poly (MAA)–chitosan graft copolymer with a graft yield of 48% has been identified in the literature.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 August 2015

Robert Bogue

– This paper aims to provide an insight into recent innovations in adhesive technology by considering a selection of commercial developments and academic research activities.

Abstract

Purpose

This paper aims to provide an insight into recent innovations in adhesive technology by considering a selection of commercial developments and academic research activities.

Design/methodology/approach

Following an introduction, this paper first discusses a selection of commercially developed adhesives used in the healthcare, photovoltaics and aerospace industries. It then considers biomimetic adhesive research, specifically dry adhesives which mimic the principles of gecko adhesion and wet adhesives based on the chemistry which underpins mussel adhesion. Finally, brief concluding comments are drawn.

Findings

This shows that new adhesives continue to be developed to meet a growing range of industrial requirements, and a major research effort into biologically inspired adhesion mechanisms is poised to yield new families of high-performance adhesives.

Originality/value

This provides details of recent commercial and academic developments in adhesive technology.

Details

Assembly Automation, vol. 35 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 19 June 2020

Kuei-Kuei Lai, Hsueh-Chen Chen, Yu-Hsin Chang, Vimal Kumar and Priyanka C. Bhatt

This study aims to propose a methodology by integrating three approaches, namely, internal core technology, external knowledge flow and industrial technology development to help…

Abstract

Purpose

This study aims to propose a methodology by integrating three approaches, namely, internal core technology, external knowledge flow and industrial technology development to help companies improve their decision-making quality for technology planning and enhance their research and development (R&D) portfolio efficiency.

Design/methodology/approach

The primary focus of this study is thin-film solar technology and patent data is retrieved from the United States Patent and Trademark Office (USPTO) database. This study presents a methodology based on the proposed integrated analysis method, constructed with patent indicators, centrality analysis of social networks and main path analysis.

Findings

The results of this study can be itemized as – the core technological competency: companies involved in two specific technology fields have lower strength in R&D portfolio than leading companies with single-core technology. Knowledge flow: most companies in a network are knowledge producers/absorbers and technological development: diverse source and sink nodes were identified in the global main path during 1997-2003, 2004-2010 and 2011-2017.

Research limitations/implications

Latecomer companies can emulate leaders’ innovation and enhance their technological competence to seek niche technology. Using the global main path, companies monitor outdated technologies that can be replaced by new technologies and aid to plan R&D strategy and implement appropriate strategic decisions avoiding path dependency.

Originality/value

The knowledge accumulation process helps in identifying the change of position and the role of companies; understanding the trend of industrial technology knowledge helps companies to develop new technology and direct strategic decisions. The novelty of this research lies in the integrated approach of three methods aiding industries to find their internal core technical competencies and identify the external position in the competitive market.

Details

Journal of Knowledge Management, vol. 25 no. 2
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 15 May 2009

J.H.‐G. Ng, M.P.Y. Desmulliez, M. Lamponi, B.G. Moffat, A. McCarthy, H. Suyal, A.C. Walker, K.A. Prior and D.P. Hand

The purpose of this paper is to present a novel manufacturing process that aims to pattern metal tracks onto polyimide at atmospheric pressure and ambient environment. The process…

Abstract

Purpose

The purpose of this paper is to present a novel manufacturing process that aims to pattern metal tracks onto polyimide at atmospheric pressure and ambient environment. The process can be scaled up for industrial applications.

Design/methodology/approach

From a thorough literature survey, different approaches were carried out for processing polyimide. Following a design of experiments for the processing and various characterisation techniques, a micro‐coil was manufactured as a test demonstrator.

Findings

The characteristics of some main formaldehyde‐based electroless copper baths were compared. The quality of the sidewalls was characterised and the performance of the process was assessed.

Originality/value

This paper demonstrates a high‐value manufacturing technique that is mass manufacturable, low cost and suitable for use on 3D surfaces. Criteria required for the development of a direct‐writing process have been described. The issues surrounding electroless plating on polyimide have been explained.

Details

Circuit World, vol. 35 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 18 April 2017

Yang Guo, Huseini S. Patanwala, Brice Bognet and Anson W.K. Ma

This paper aims to summarize the latest developments both in terms of theoretical understanding and experimental techniques related to inkjet fluids. The purpose is to provide…

2765

Abstract

Purpose

This paper aims to summarize the latest developments both in terms of theoretical understanding and experimental techniques related to inkjet fluids. The purpose is to provide practitioners a self-contained review of how the performance of inkjet and inkjet-based three-dimensional (3D) printing is fundamentally influenced by the properties of inkjet fluids.

Design/methodology/approach

This paper is written for practitioners who may not be familiar with the underlying physics of inkjet printing. The paper thus begins with a brief review of basic concepts in inkjet fluid characterization and the relevant dimensionless groups. Then, how drop impact and contact angle affect the footprint and resolution of inkjet printing is reviewed, especially onto powder and fabrics that are relevant to 3D printing and flexible electronics applications. A future outlook is given at the end of this review paper.

Findings

The jettability of Newtonian fluids is well-studied and has been generalized using a dimensionless Ohnesorge number. However, the inclusion of various functional materials may modify the ink fluid properties, leading to non-Newtonian behavior, such as shear thinning and elasticity. This paper discusses the current understanding of common inkjet fluids, such as particle suspensions, shear-thinning fluids and viscoelastic fluids.

Originality/value

A number of excellent review papers on the applications of inkjet and inkjet-based 3D printing already exist. This paper focuses on highlighting the current scientific understanding and possible future directions.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 June 2016

Demet Kucuk, Onur Balci and Mustafa Tutak

Nowadays, the usage of antibacterial textiles is very popular for different type of textiles. The silver (Ag) and zinc oxide (ZnO) are the most popular materials in order to…

Abstract

Purpose

Nowadays, the usage of antibacterial textiles is very popular for different type of textiles. The silver (Ag) and zinc oxide (ZnO) are the most popular materials in order to improve antibacterial properties of textiles. The purpose of this paper is to investigate the possibility to produce Ag nanoparticle (NP), ZnO NP, Ag/ZnO NP composite materials in this experimental study.

Design/methodology/approach

It was investigated whether it was possible to produce Ag NP, ZnO NP, Ag/ZnO NP composite materials by hydrothermal method which was known as in-situ approach on the fiber. In addition, the colloidal silver (Ag+) was produced by electrolysis method, and used instead of process water which was necessary during generating of NPs on the fiber by this method. After whole applications, the samples were characterized by SEM, XRD, EDX analyses and the antibacterial activity of specimens was tested according to the ASTM E 2149-01 (gram-negative Escherichia coli). In addition, the resistance to the repeated washes of these antibacterial samples was investigated.

Findings

The production of NPs on the fiber was achieved. The results showed that the samples had sufficient antibacterial activity and this activity did not reduce depending on repeated washing treatments.

Research limitations/implications

Because of usage of one type of fiber, it would be necessary to make researches on the different type of fiber, testing procedure (with different bacteria), washing replications and prescriptions.

Practical implications

During the process the temperature control is very important for the produced fiber. In addition chosen antibacterial test method is crucial for the testing of activity of product. Fiber must be washed at least once to remove unfixed NPs on the fiber.

Originality/value

The technical antibacterial polyester fiber was in-situ coated by hydrothermal method with Ag, ZnO, Ag/ZnO composite NPs.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 18 May 2012

A.H. Gao, P.H. Pi, X.F. Wen, D.F. Zheng, Z.Q. Cai, J. Cheng and Z.R. Yang

The purpose of this paper is to enhance the anticorrosion property of aluminium pigments and to improve their compatibility with polymers in coating.

Abstract

Purpose

The purpose of this paper is to enhance the anticorrosion property of aluminium pigments and to improve their compatibility with polymers in coating.

Design/methodology/approach

Aluminium pigments encapsulated by organic‐inorganic layer were prepared by hydrolysis and condensation of organic silane acrylate resin and tetraethoxy silane (TEOS) on the surface of pigments via sol‐gel method. TEOS and poly (methyl methacryalte‐n‐butyl acrylate‐vinyl triethoxysilane) (PMBV) formed in advance by co‐polymerisation of methyl methacrylate (MMA), n‐butyl acrylate (BA) and vinyl triethoxysilane (VTES) were used as precursors. The adhesion property of the aluminium pigments was measured by peel test, and the loss of silvery appearance after encapsulation and acid soaking were both evaluated by colour lightness difference (ΔL) measurement. The encapsulated aluminium pigments were further characterised by means of FTIR, SEM, TG and XPS.

Findings

It was found that PMBV‐SiO2 thin films could be formed on the surface of aluminium pigments smoothly and uniformly, and the adhesion and anticorrosion performances of encapsulated aluminium pigments were improved significantly.

Research limitations/implications

The organic silane acrylate resin used as a precursor in the sol‐gel process could be synthesised from other aclyate monomers. In addition, the hydrolysis and condensation mechanism of organic silane acrylate resin on the surface of aluminium pigments need further studies.

Practical implications

The method developed provided a good solution to the two problems of aluminium pigments and increased their application values.

Originality/value

The method of improving adhesion and anticorrosion properties of aluminium pigments was novel and could find numerous applications in surface coatings and adhesives.

1 – 10 of 742