Search results

1 – 10 of 36
Case study
Publication date: 25 April 2024

Ashutosh Dash and Rahul Pramani

The primary objectives of the case study are to get the participants exposed to the issues of working capital which even profitable companies face on a day-to-day basis; give the…

Abstract

Learning outcomes

The primary objectives of the case study are to get the participants exposed to the issues of working capital which even profitable companies face on a day-to-day basis; give the participants an understanding of how to balance the, at times, conflicting objectives of increasing profits and sales through favorable credit terms; and expose them to the impact of increase in inventory levels and average collection period on margins in a period of slow growth. They will also learn about the concept of factoring and its uses.

Case overview/synopsis

The case study is about a group of companies engaged in education, steel fabrication and oil businesses owned by a single proprietor. The company was based in Fatehnagar which was part of Hyderabad district in the state of Telangana, India, and the case study traces the origins of the group from 1960s to 2021. The group was invested the surplus cash flows from the oil business to initiate and expand other businesses during this period. The economic downturn due to the COVID-19 pandemic had hit the company, particularly its oldest business – Noble Chemical Agency. The oil business was facing issues related to its growth and profitability, and the uncertainty around COVID-19-related restrictions had only augmented the fears of the management. The case study looks at issues and the dilemma which the owner of the company faced. The case study highlights various issues related to working capital management, especially related to receivables management and inventory levels faced by businesses during the slow-growth phase. It demonstrates how working capital management issues, if not resolved in time, can lead to insolvency of even a successful company with a sound business model.

Complexity academic level

The case study is meant for teaching in postgraduate management programs (Master of Business Administration and Postgraduate Diploma in Management) in the following courses: corporate finance/financial management course in the first year (the case study should be taught towards the end of the course); and management accounting courses in first year (the case study should be positioned in the middle of these courses). The case study can also be used to highlight issues related to working capital and small business management in a Management Development Programme (MDP) course for “Finance fundamentals for non-finance executives”.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS 1: Accounting and finance.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 2
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 22 January 2024

Peng Yin, Tao Liu, Baofeng Pan and Ningbo Liu

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient…

Abstract

Purpose

The coal-based synthetic natural gas slag (CSNGS) is a solid waste remaining from the incomplete combustion of raw coal to produce gas. With the continuous promotion of efficient and clean utilization of coal in recent years, the stockpiling of CSNGS would increase gradually, and it would have significant social and environmental benefits with reasonable utilization of CSNGS. This study prepared a new geopolymer by mixing CSNGS with PC42.5 cement in a certain mass ratio as the precursor, with sodium hydroxide and sodium silicate solution as the alkali activators.

Design/methodology/approach

The formulation of coal-based synthetic natural gas slag geopolymer (CSNGSG) was determined by an orthogonal test, and then the strength mechanism and microstructure of CSNGSG were characterized by multi-scale tests.

Findings

The results show that the optimum ratio of CSNGSG was a sodium silicate modulus of 1.3, an alkali dosage of 21% and a water cement ratio of 0.36 and the maximum unconfined compressive strength of CSNGSG at 7 d was 26.88 MPa. The increase of curing temperature could significantly improve the compressive strength of CSNGSG, and the curing humidity had little effect on the compressive strength of CSNGSG. The development of the internal strength of CSNSG at high temperatures consumed SiO2, Al2O3 and CaO and the intensity of corresponding crystalline peaks decreased.

Originality/value

Moreover, the vibration of chemical bonds in different wavenumbers also revealed the reaction mechanism of CSNSG from another perspective. Finally, the relevant test results indicated that CSNGS had practical application value as a raw material for the preparation of geopolymer cementing materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 February 2024

Nilesh R. Parmar, Sanjay R. Salla, Hariom P. Khungar and B. Kondraivendhan

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on…

Abstract

Purpose

This study aims to characterize the behavior of blended concrete, including metakaolin (MK) and quarry dust (QD), as supplementary cementing materials. The study focuses on evaluating the effects of these materials on the fresh and hardened properties of concrete.

Design/methodology/approach

MK, a pozzolanic material, and QD, a fine aggregate by-product, are potentially sustainable alternatives for enhancing concrete performance and reducing environmental impact. The addition of different percentages of MK enhances the pozzolanic reaction, resulting in improved strength development. Furthermore, the optimum dosage of MK, mixed with QD, and mechanical properties like compressive, flexural and split tensile strength of concrete were evaluated to investigate the synergetic effect of MK and quarry dust for M20-grade concrete.

Findings

The results reveal the influence of metakaolin and QD on the overall performance of blended concrete. Cost analysis showed that the optimum mix can reduce the 7%–8% overall cost of the materials for M20-grade concrete. Energy analysis showed that the optimum mix can reduce 7%–8% energy consumption.

Originality/value

The effective utilization is determined with the help of the analytical hierarchy process method to find an optimal solution among the selected criteria. According to the AHP analysis, the optimum content of MK and quarry dust is 12% and 16%, respectively, performing best among all other trial mixes.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 January 2024

Zhengwei Song, Zhi-Hui Xie, Lifeng Ding and Shengjian Zhang

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Abstract

Purpose

This paper aims to comprehensively review the preparation methods of superhydrophobic surfaces (SHPS) for corrosion protection of Mg alloy in recent years.

Design/methodology/approach

The preparation methods, wettability and corrosion resistance of SHPS on Mg alloy in the past three years are systematically described in this paper.

Findings

Two types of SHPS, including single-layer and multilayer coatings for corrosion protection of Mg alloy are summarized. Preparing multilayered coatings with multifunction is the current trend in developing SHPS on Mg alloy.

Originality/value

This paper reviewed the preparation methods and corrosion resistance of SHPS on Mg alloys. It provides a valuable reference for researchers to develop highly durable SHPS with excellent corrosion resistance for Mg alloys.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 December 2021

Saranya P., Praveen Nagarajan and A.P. Shashikala

This study aims to predict the fracture properties of geopolymer concrete, which is necessary for studying failure behaviour of concrete.

Abstract

Purpose

This study aims to predict the fracture properties of geopolymer concrete, which is necessary for studying failure behaviour of concrete.

Design/methodology/approach

Geopolymers are new alternative binders for cement in which polymerization gives strength to concrete rather than through hydration. Geopolymer concrete was developed from industrial byproducts such as GGBS and dolomite. Present study estimates the fracture energy of GGBS geopolymer concrete using three point bending test (RILEM TC50-FMC) with different percentages of dolomite and compare with cement concrete having same strength.

Findings

The fracture properties such as peak load, critical stress intensity factor, fracture energy and characteristic length are found to be higher for GGBS-dolomite geopolymer concrete, when their proportion becomes 70:30.

Originality/value

To the best of the authors’ knowledge, this is an original experimental work.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 4 December 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of…

Abstract

Purpose

Concrete, the second most used material in the world, surpassed only by water, relies on a vast amount of cement. The process of cement production emits substantial amounts of carbon dioxide (CO2). Consequently, it is crucial to search for cement alternatives. Geopolymer concrete (GC) uses industrial by-product material instead of traditional cement, which not only reduces CO2 emissions but also enhances concrete durability. On the other hand, the disposal of concrete waste in the landfills represents a significant environmental challenge, emphasising the urgent need for sustainable solutions. This study aimed to investigate waste concrete's best form and rate as the alternative aggregates in self-compacting and ambient-cured GC to preserve natural resources, reduce construction and demolition waste and decrease pertinent CO2 emissions. The binding material employed in this research encompasses fly ash, slag, micro fly ash and anhydrous sodium metasilicate as an alkali activator. It also introduces the best treatment method to improve the recycled concrete aggregate (RCA) quality.

Design/methodology/approach

A total of25%, 50% and 100% of coarse aggregates are replaced with RCAs to cast self-compacting geopolymer concrete (SCGC) and assess the impact of RCA on the fresh, hardened and water absorption properties of the ambient-cured GC. Geopolymer slurry was used for coating RCAs and the authors examined the effect of one-day and seven-day cured coated RCA. The mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity), rheological properties (slump flow, T500 and J-ring) and total water absorption of RCA-based SCGC were studied. The microstructural and chemical compositions of the concrete mixes were studied by the methods of energy dispersive X-Ray and scanning electron microscopy.

Findings

It is evident from the test observations that 100% replacement of natural aggregate with coated RCA using geopolymer slurry containing fly ash, slag, micro fly ash and anhydrous sodium metasilicate cured for one day before mixing enhances the concrete's quality and complies with the flowability requirements. Assessment is based on the fresh and hardened properties of the SCGC with various RCA contents and coating periods. The fresh properties of the mix with a seven-day curing time for coated RCA did not meet the requirements for self-compacting concrete, while this mix demonstrated better compressive strength (31.61 MPa) and modulus of elasticity (15.39 GPa) compared to 29.36 MPa and 9.8 GPa, respectively, for the mix with one-day cured coated RCA. However, incorporating one-day-cured coated RCA in SCGC demonstrated better splitting tensile strength (2.32 MPa) and water absorption (15.16%).

Research limitations/implications

A potential limitation of this study on SCGC with coated RCAs is the focus on the short-term behaviour of this concrete. This limited time frame may not meet the long-term requirements for ensuring the sustained durability of the structures throughout their service life.

Originality/value

This paper highlights the treatment technique of coating RCA with geopolymer slurry for casting SCGC.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 36