Search results

1 – 10 of 63
Article
Publication date: 25 April 2022

Hadji Ben Salah, Benamara Dalila and Taallah Bachir

This paper aims to express a mathematical model that predicts the effect of mineral additives on the physical–mechanical properties of high-performance sand concrete (HPSC), using…

53

Abstract

Purpose

This paper aims to express a mathematical model that predicts the effect of mineral additives on the physical–mechanical properties of high-performance sand concrete (HPSC), using SAS's JMP7 statistical analysis software.

Design/methodology/approach

A mixture design modeling approach is applied to sand concrete (SC) for optimizing mixtures without being obliged to do a lot of experiments, where the cement is partially replaced with two mineral additives silica fume (SF) and blast furnace slag (BFS) in proportions as high as 20% of the mass. A total of 15 mixtures of sand concrete is prepared in the laboratory using this analytical technique in combinations with binary and ternary systems to estimate the workability and the compressive strength (CS) of sand concrete at 7 and 28 days.

Findings

The results obtained showed that the use of derived models based on the experimental design approach greatly assisted in understanding the interactions between the various parameters of the studied mixtures; the mathematical models present excellent correlation coefficients (R² = 0.96 for CS7 days, R² = 0.93 for CS28 days and R² = 0.95 for slump) for all studied responses. Moreover, it was also found that the inclusion of additives (SF and BFS) in binary mixture SC12 and ternary mixtures SC8 leads to a significant improvement in mechanical strength compared to reference sand concrete SC15. These results give the possibility to obtain a formulation of HPSC.

Originality/value

This paper shows the possibility of manufacturing high-performance sand-concrete with good compressive strength; the developed mathematical model by using SAS's JMP7 statistical analysis software allowed us to reach a strength compression value of about 60 MPa, in 28 days, by replacing 10% of the cement weight with silica fume. Furthermore, with partial replacement of the cement weight (15%) with two additions such as silica fume (10%) and blast furnace slag (5%), a 58 MPa of compressive strength can be achieved, without overlooking the fact that this can be a key economic and environmental alternative.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 June 2023

Ghania Mirouzi and Amina Houda

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach…

Abstract

Purpose

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach formulation of polymer concrete based on reduction in the quantity of the binder and disposal of large quantities of industrial by-products and household waste such as the marble, the brick and silica fume whose valuation in polymer concrete could be an interesting ecological and economical alternative. The incorporation of a rate of 10% brick powder affects the distribution of pores inside polymer concrete, that is, the pore diameters become thinner and decrease and the porosity becomes evenly distributed. The recycled mineral brick powder addition in polymer concrete mix improved the mechanical properties.

Design/methodology/approach

This polymer concrete was prepared by using polyester resin and two different types of sand, following a new formulation based on an empirical method. Furthermore, the optimal binder percentage was of 20% resin and a mixture of 52% dune sand and 48% quarry sand according to the Abrams method. To achieve our objective, five rates (from 2% to 10%) of brick powder, marble powder and silica fume were examined. Afterwards, its mechanical characteristics were evaluated via a three-point flexural with compressive resistance. The findings indicated that the addition of brick, marble and silica fume to polymer concrete increases the flexural strength with 21.84%, 12.76% and 9.07%, respectively.

Findings

Concerning the compressive strength, the best resistance is that of polymer concretes based on brick powder, and this economic formulation of polymer concrete serves the optimal cost/resistance ratio criteria. It allows an improvement in the mechanical resistance of concrete are obtained by adding brick powder that exceed that of the reference concrete.

Originality/value

In the past few decades, there has been several contribution concerning the subject of the reduction of the binder quantity in polymer concretes and adding the industrial and household wastes. However, previous studies revolving around the same area disregarded the effect of the brick powder, which appears scientifically of great importance for enriching the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 7 December 2023

Fatma Bouzeboudja and Abdelmadjid Si Salem

To contribute to the identification of the parameters influencing the behavior of textile-reinforced concrete (TRC), the purpose of this paper is to investigate the flexural…

Abstract

Purpose

To contribute to the identification of the parameters influencing the behavior of textile-reinforced concrete (TRC), the purpose of this paper is to investigate the flexural behavior of TRC-based plates under four-point bending notably designed in the context of sustainable development and the substitution of mortar components with natural and abundant materials.

Design/methodology/approach

An extensive experimental campaign was focused about two main parameters. The first one emphases the textile reinforcements, such as the number of layers, the nature and the textile mesh size. In the second step, the composition of the mortar matrix was explored through the use of dune sand as a substitute of the river one.

Findings

Test results in terms of load-displacement response and failure patterns were highlighted, discussed and confronted to literature ones. As key findings, an increase of the load-bearing capacity and ductility, comparable to the use of an industrially produced second textile layer was recorded with the use of dune sand in the mortar mix design. The designed ecofriendly samples with economic concerns denote the significance of obtained outcomes in this research study.

Originality/value

The novelty of the present work was to valorize the use of natural dune sand to design new TRC samples to respond to the environmental and economical requirements. The obtained values provide an improved textiles–matrix interface performance compared to classical TRC samples issued from the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 April 2022

Fadillawaty Saleh, Muhammad Adhi Gunawan, Tri Ismarani Yolanda, Fanny Monika, Hakas Prayuda, Martyana Dwi Cahyati and Muhammad Mirza Abdillah Pratama

This study aims to investigate the properties of mortar made from a bottom ash substitute as a sustainable construction material. It is believed that the use of cement in concrete…

Abstract

Purpose

This study aims to investigate the properties of mortar made from a bottom ash substitute as a sustainable construction material. It is believed that the use of cement in concrete construction contributes to the release of carbon dioxide into the atmosphere, which has been a consistent increase in recent years. The utilization of bottom ash waste is expected to reduce pollution associated with cement production.

Design/methodology/approach

Bottom ash is used as replacement materials for cement and fine aggregate in the manufacture of mortar. Bottom ash substituted for cement of 10%, 20% and 30% of the total weight of the binder, whereas bottom ash substituted for the fine aggregate of 30%, 40% and 50% of the total weight of the sand. Binder properties were determined using scanning electron microscopy and energy dispersive X-ray. Meanwhile, the fresh properties (slump flow) and hardened properties were determined (compressive strength and mass density). In the hardened properties test, two types of curing were used: water and sealed curing.

Findings

The compressive strength of mortar decreased as the amount of bottom ash as cement replacement. However, the compressive strength increased when bottom ash was used as aggregate replacement. Additionally, bottom ash was sufficient as a substitute for fine aggregate than as a substitute for cement.

Originality/value

This research presents test results that are more straightforward to apply in the construction site.

Details

World Journal of Engineering, vol. 20 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 May 2022

Nivin M. Ahmed, Mostafa G. Mohamed and Walaa M. Abd El-Gawad

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite…

Abstract

Purpose

Long time ago, multistructured materials showed great interest being considered as the bridge between bulk and atomic materials. Core-shell particles are kind of composite materials that refer to multilayered structures with a core totally surrounded by shell(s) (onion-like structure). These new structures can offer an advantage of applying new adjustable parameters like shape, stoichiometry and chemical ordering, in addition to the opportunity of tailoring more complexed structures for different applications. Recently it was found that these structures can be tuned and taken for more advanced path with novel structures formed of core surrounded by multishells. The purpose of this study is to study the effect of the new anticorrosive pigments with its mutual shells and how each shell affects the performance of the pigment in protecting the metal and which shell will be more relevant in its effect.

Design/methodology/approach

The prepared pigments were characterized using X-ray fluorescence, X-ray diffraction, TEM and SEM/EDX to prove their core-shell structure, and then they were integrated in coating formulations to evaluate their anticorrosive activity using immersion test and electrochemical impedance spectroscopy (EIS).

Findings

The results showed that the prepared core-shell pigments possess a lot of unique characteristics and can offer improved anticorrosive performance in the generated coatings.

Originality/value

Core-mutual shells structured pigments were prepared for improving the corrosion resistivity of the organic coatings as a new trend in anticorrosive pigments.

Details

Pigment & Resin Technology, vol. 52 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 February 2024

Ayad Alameeri, Gholamreza Abdollahzadeh and Seyedkomeil Hashemiheidari

This study aims to determine the effect of replacing a portion of the cement in the concrete mixture with silica fume (SF) on the corrosion resistance of reinforcing bars, the…

Abstract

Purpose

This study aims to determine the effect of replacing a portion of the cement in the concrete mixture with silica fume (SF) on the corrosion resistance of reinforcing bars, the compressive strength of concrete and the tensile strength of hook bars in both corroded and non-corroded external joints of structures. The external beam-column connection was studied because of its critical role in maintaining structural continuity in all three directions and providing resistance to rotation.

Design/methodology/approach

In external concrete joints, the bars at the end of the beams are often bent at 90° to form hooks that embed in columns. Owing to the importance of embedding distance and the need to understand its susceptibility to corrosion damage from chloride attack, a series of experiments were conducted on 12 specimens that accurately simulate real-site conditions in terms of dimensions, reinforcement and hook bars. SF was replaced with 10% and 15% of the weight of cement in the concrete mixture. To simulate corrosion, the specimens were subjected to accelerated corrosion in the laboratory by applying a low continuous current of 0.35 mA for 58 days.

Findings

The results revealed the effect of SF in improving the compressive strength of concrete, the pullout resistance of the hook bars and the corrosion resistance. In addition, it showed an apparent effect of the corrosion of reinforcing bars in reducing the bonding strength of hook bars with concrete and the effect of SF in improving this strength.

Originality/value

It was noted that the improvement of the results, achieved by replacing 10% of the weight of cement with SF, was significantly close to the results obtained by replacing 15% of the SF. It is recommended that an SF ratio of 10% be adopted to achieve the greatest economic savings.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 April 2022

Ayoub Abou Houraira, Abdellah Ouali, Ouafa Elhammoumi and Ahmed Fekri

Morocco is facing climate change, as shown by national studies conducted to date. The purpose of our research work is, on one hand, to develop an experimental protocol; simulating…

Abstract

Purpose

Morocco is facing climate change, as shown by national studies conducted to date. The purpose of our research work is, on one hand, to develop an experimental protocol; simulating the Moroccan climate, through exposing concretes to accelerated aging in different cycles of temperature variation (+5 to +40 C°) and humidity (60–98% RH) and on another hand, to determine the effect of exposure to temperature and humidity variation cycles on the durability indicators (of concrete [with and without thermal cure]).

Design/methodology/approach

For this purpose, three classes of concrete were studied (C35, C40 and C55). Each class of concrete was considered first with no addition of silica fume (SF) and then with a 10% addition of SF. The concrete samples underwent three types of conditioning before performing the tests. The control concretes (Ct) were demoulated after 24 h and stored under stable temperature and humidity conditions (20 ± 2 °C and 80% ± 5 RH). Treated concretes (CV) demouled after 24 h and exposed to 300 cycles of 12 h of temperature and moisture variation in a climate chamber. And finally, concretes that have undergone a heat cure (CTV) for 5 h at 90 °C, were then removed from the mold and exposed to temperature and moisture variations cycles identical to treated concrete (CV).

Findings

The results obtained show that aging accelerated by temperature change, and humidity improves durability indicators compared to Ct. Concretes that have undergone a thermal cure, followed by accelerated aging, show an improvement in durability indicators between 50 and 200 cycles, but the performance of concrete decreases after 200 exposure cycles. The addition of SF plays a beneficial role in the durability of concrete in the three exposure environments.

Originality/value

The originality of the work is, to develop an experimental protocol, simulating the Moroccan climate, through exposing concretes to accelerated aging in different cycles of temperature variation (+5 to +40 C°) and humidity (60–98% RH) and on another hand, to determine the effect of exposure to temperature and humidity variation cycles on the durability indicators of conventional concrete (with and without thermal cure).

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 22 February 2022

U. Siva Rama Krishna and Naga Satish Kumar Ch

The ultra-thin white topping (UTW) is a cement concrete overlay of the thickness of 50–100 mm on bituminous concrete pavements with surface failures. This is a long-lasting…

Abstract

Purpose

The ultra-thin white topping (UTW) is a cement concrete overlay of the thickness of 50–100 mm on bituminous concrete pavements with surface failures. This is a long-lasting solution without having short-term failures. This paper aims to design an ultra-thin cement concrete overlay using a developed critical stress model with sustainable concrete materials for low-volume roads.

Design/methodology/approach

In this research paper, a parametric study was conducted using the ultra-thin concrete overlay finite element model developed with ANSYS software, considering the significant parameters affecting the performance and development. The non-linear regression equation was formed using a damped least-squares method to predict critical stress due to the corner load of 51 kN.

Findings

The parametric study results indicate that with a greater elastic modulus of bituminous concrete, granular layer along with 100 mm thickness of concrete layer reduces the critical corner stress, interface shear stress in a significant way responsible for debonding of concrete overlay, elastic strains in the pavement further the concrete overlay can bear infinite load repetitions. From validation, it is understood that the non-linear regression equation developed is acceptable with similar research work done.

Originality/value

From the semi-scale experimental study, it is observed that the quaternary blended sustainable concrete overlay having a high modulus of rupture of 6.34 MPa is competent with conventional cement concrete overlay in terms of failure load. So, concrete overlay with sustainable materials of 100 mm thickness and higher elastic modulus of the layers can perform in a sustainable way meeting the environmental and long-term performance requirements.

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 28 July 2023

Anagi Balachandra, Roz-Ud-Din Nassar and Parviz Soroushian

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened…

Abstract

Purpose

This study aims to report the development and experimental evaluation of three innovative corrosion-resistant modified epoxy coatings, namely, nanocomposite/toughened, self-healing and hybrid epoxy coatings, for application on steel substrates.

Design/methodology/approach

The corrosion resistance of these coatings was evaluated in a highly corrosive environment of salt fog spray for 2,500 h of exposure. Electrochemical impedance spectroscopy (EIS) measurements in sustained exposure to NaCl in a saturated Ca(OH)2 solution, rust creepage measurements at the location of scribe formed in the coatings and adhesion strength test were used to assess the performance of the innovative coatings. Commercially available marine-grade protective epoxy coatings were used as the reference coatings.

Findings

The test results showed that the modified epoxy coatings exhibited excellent corrosion resistance when exposed to an aggressive environment for extended periods. The EIS measurements, rust creepage measurements, pull-off strength and visual appearance of the aged modified–epoxy–coated specimens confirmed the enhanced corrosion resistance of the modified epoxy coatings.

Originality/value

Among the three types of modified coatings, the hybrid epoxy coating stands out to be the best performer.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 63