Search results

1 – 10 of 16
Open Access
Article
Publication date: 19 March 2024

Mazignada Sika Limazie and Soumaïla Woni

The present study investigates the effect of foreign direct investment (FDI) and governance quality on carbon emissions in the Economics Community of West African States (ECOWAS).

Abstract

Purpose

The present study investigates the effect of foreign direct investment (FDI) and governance quality on carbon emissions in the Economics Community of West African States (ECOWAS).

Design/methodology/approach

To achieve the objective of this research, panel data for dependent and explanatory variables over the period 2005–2016, collected in the World Development Indicators (WDI) database and World Governance Indicators (WGI), are analyzed using the generalized method of moments (GMM). Also, the panel-corrected standard errors (PCSE) method is applied to the four segments of the overall sample to analyze the stability of the results.

Findings

The findings of this study are: (1) FDI inflows have a negative effect on carbon emissions in ECOWAS and (2) The interaction between FDI inflows and governance quality have a negative effect on carbon emissions. These results show the decreasing of environmental damage by increasing institutional quality. However, the estimation results on the country subsamples show similar and non-similar aspects.

Practical implications

This study suggests that policymakers in the ECOWAS countries should strengthen their environmental policies while encouraging FDI flows to be environmentally friendly.

Originality/value

The subject has rarely been explored in West Africa, with gaps such as the lack of use of institutional variables. This study contributes to the literature by drawing on previous work to examine the role of good governance on FDI and the CO2 emission relationship in the ECOWAS, which have received little attention. However, this research differs from previous work by subdividing the overall sample into four groups to test the stability of the results.

Details

Journal of Economics and Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1859-0020

Keywords

Article
Publication date: 25 December 2023

Isaac Akomea-Frimpong, Jacinta Rejoice Ama Delali Dzagli, Kenneth Eluerkeh, Franklina Boakyewaa Bonsu, Sabastina Opoku-Brafi, Samuel Gyimah, Nana Ama Sika Asuming, David Wireko Atibila and Augustine Senanu Kukah

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of…

Abstract

Purpose

Recent United Nations Climate Change Conferences recognise extreme climate change of heatwaves, floods and droughts as threatening risks to the resilience and success of public–private partnership (PPP) infrastructure projects. Such conferences together with available project reports and empirical studies recommend project managers and practitioners to adopt smart technologies and develop robust measures to tackle climate risk exposure. Comparatively, artificial intelligence (AI) risk management tools are better to mitigate climate risk, but it has been inadequately explored in the PPP sector. Thus, this study aims to explore the tools and roles of AI in climate risk management of PPP infrastructure projects.

Design/methodology/approach

Systematically, this study compiles and analyses 36 peer-reviewed journal articles sourced from Scopus, Web of Science, Google Scholar and PubMed.

Findings

The results demonstrate deep learning, building information modelling, robotic automations, remote sensors and fuzzy logic as major key AI-based risk models (tools) for PPP infrastructures. The roles of AI in climate risk management of PPPs include risk detection, analysis, controls and prediction.

Research limitations/implications

For researchers, the findings provide relevant guide for further investigations into AI and climate risks within the PPP research domain.

Practical implications

This article highlights the AI tools in mitigating climate crisis in PPP infrastructure management.

Originality/value

This article provides strong arguments for the utilisation of AI in understanding and managing numerous challenges related to climate change in PPP infrastructure projects.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 30 August 2022

Loan Thi Pham, Thu Nguyen, Thanh Trinh, Anh Nguyen, Quang Do, Bien Bui and Jianzhuang Xiao

This study deals with three major topics: (1) the developed generations of 3D concrete printers, (2) the mix design approach for cement-based materials and (3) laboratory testing.

Abstract

Purpose

This study deals with three major topics: (1) the developed generations of 3D concrete printers, (2) the mix design approach for cement-based materials and (3) laboratory testing.

Design/methodology/approach

The big question is how to approach and follow the trend of 3D concrete printing technology with limited conditions such as printers, technology issues and budget. Therefore, this research focused on dealing with prominent issues, including printing equipment, mixed proportion design approaches and laboratory testing methods will be presented and analyzed.

Findings

The details of three printing equipment, including a printhead, a small-scale 3D printer, a 3D concrete printer and the printing process related to Simplify and Mach3 software, will be revealed. Secondly, the classification and efficient process will be given according to the mixture proportion design method proposed. Thirdly, laboratory testing will be conducted, including extrudability, buildability and printability. Finally, some highlight conclusions are given based on the appearance and quality of the samples printed.

Research limitations/implications

Research has been carried out with cement-based materials and 3D concrete printer which adopted the screw extruders.

Practical implications

Mix design proportion method via coefficient and slump value proposed by the authors is a relatively effective and convenient method; the rheological properties, printing process and geometry of a sample are the most significant factors that decide the success of the printing work.

Social implications

Additive manufacturing, widely known as 3D printing, has recently drawn the attention of researchers worldwide for a few decades. Thanks to its capability to transform a drawing into an object, the idea of 3D printing has also attracted the attention of engineers, architects and investors.

Originality/value

(1) Mix design proportion via coefficient and slump value proposed by the authors is a relatively effective and convenient method that can be implemented simply at the laboratory or the site. (2) The ranges of coefficients by weight of the water, sand and PP fibers to binder are (0.27–0.3), (0.6–1.0) and around 0.3, respectively. The maximum sand size was smaller than 2.5 mm, and the small amount of PP fibers enhanced the quality and significantly reduced the printed samples' shrinkage. (3) The printability is affected by mix proportion and the relationship between nozzle printing speed parameter and extrusion speed of motor turning. (4) The chosen layer height recommended smaller than 0.83 times nozzle diameter is reasonable and improves adhesions and buildability. (5) The printing open time of the concrete mixture of (12–15) minutes is a barrel to promote 3D concrete printing technology and needs improvement.

Details

Smart and Sustainable Built Environment, vol. 12 no. 5
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 March 2024

Payman Sahbah Ahmed, Ava A.K. Mohammed and Fakhir Aziz Rasul Rozhbiany

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping…

Abstract

Purpose

The purpose of this study is to get benefits from manufacturing harmful wastes is by using them as a reinforcement with epoxy matrix composite materials to improve the damping characteristics in applications such as machine bases, rockets, satellites, missiles, navigation equipment and aircraft as large structures, and electronics as such small structures. Vibration causes damaging strains in these components.

Design/methodology/approach

By adding machining chips with weight percentages of 5, 10, 15 and 20 Wt.%, with three different chip lengths added for each percentage (0.6, 0.8 and 1.18 mm), the three-point bending and damping characteristics tests are utilized to examine how manufacturing waste impacts the mechanical properties. Following that, the optimal lengths and the chip-to-epoxy ratio are determined. The chip dispersion and homogeneity are assessed using a field emission scanning electron microscope.

Findings

Waste copper alloys can be used to enhance the vibration-dampening properties of epoxy resin. The interface and bonding between the resin and the chip are crucial for enhancing the damping capabilities of epoxy. Controlling the flexural modulus by altering the chip size and quantity can change the damping characteristics because the two variables are inversely related. The critical chip size is 0.8 mm, below which smaller chips cannot evenly transfer, and disperse the vibration force to the epoxy matrix and larger chips may shatter and fracture.

Originality/value

The main source of problems in machine tools, aircraft and vehicle manufacturing is vibrations generated in the structures. These components suffer harmful strains due to vibration. Damping can be added to these structures to get over these problems. The distribution of energy stored as a result of oscillatory mobility is known as damping. To optimize the serving lifetime of a dynamic suit, this is one of the most important design elements. The use of composites in construction is a modern method of improving a structure's damping capacity. Additionally, it has been demonstrated that composites offer better stiffness, strength, fatigue resistance and corrosion resistance. This research aims to reduce the vibration effect by using copper alloy wastes as dampers.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 11 January 2024

Ahmed Ashteyat, Ala Taleb Obaidat, Yasmeen Taleb Obeidat and Ahmad Bani Awwad

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon…

18

Abstract

Purpose

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) ropes.

Design/methodology/approach

In this research, nine rectangular RC beams of 250 mm × 300 mm cross-section and 1,600 mm in length were constructed and tested considering the studied parameters. These parameters include the length of the CFRP rope, the orientation of the CFRP rope, the arrangement of longitudinal and the scheme of NSM-CFRP ropes.

Findings

In comparison to control specimens, the results demonstrate a considerable improvement in the torsional response of RC beams strengthened with the CFRP rope. Additionally, specimens strengthened with 90° vertical ropes increase torsional moment capacity more efficiently than specimens strengthened with 45° inclined ropes since the stress concentration leads to premature debonding of the CFRP rope. Whereas RC beams' ability to withstand torsional moments is reduced as the distance between reinforcing CFRP ropes is increased. According to test results, adding CFRP ropes to RC beams' bottoms had a slightly positive impact on torsional response.

Originality/value

This paper fulfills an identified need to study how the using of the CFRP rope is effective in strengthening RC beam subjected to torsion moment.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Book part
Publication date: 8 December 2023

Rosemary Obeng-Hinneh

The literature on cohabitation intimates a clear line between marriage and cohabitation where the latter lacks a formal or legal backing. This understanding overlooks contextual…

Abstract

The literature on cohabitation intimates a clear line between marriage and cohabitation where the latter lacks a formal or legal backing. This understanding overlooks contextual issues which complicate definitions of cohabitation. With evidence from historical and contemporary literature on cohabitation among the Asante of Ghana, this chapter argues that traditional social practices coupled with the plurality of legal frameworks governing marriage in Ghana, leads to subjective constructions and interpretations of cohabiting unions. Consequently, there are situations where one form of partnership would qualify as marriage, whilst the same would be considered a cohabiting union in other circumstances. Again, the sense in which cohabitation functions as a prelude, an alternative or equivalent to marriage among the Asante differs significantly from what pertains in other societies. The chapter, therefore, calls into question the oversimplified meanings of cohabitation often based on the assumption of a dualistic relationship between marriage and cohabitation. The chapter concludes that the definition of cohabitation among the Asante and some sections of the Ghanaian public is fluid and not as clearly defined as it is in other parts of the world, especially the Global North. Given this reality, rather than generalized interpretations of cohabitation, researchers need to consider the contextual differences and understandings of cohabitation in their studies.

Details

Cohabitation and the Evolving Nature of Intimate and Family Relationships
Type: Book
ISBN: 978-1-80455-418-0

Keywords

Article
Publication date: 15 September 2023

Payman Sahbah Ahmed

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural…

Abstract

Purpose

Epoxy resins are widely used in a variety of engineering applications, including composite wind turbine blades used in the renewable energy industry, highly complex structural components for aircraft, paints, coatings, industrial tooling, biomedical systems, adhesives, electronics and automotive. Epoxies' low fracture toughness is one of the key obstacles preventing its adoption in a wider range of applications. To address epoxy's low fracture toughness, this paper aims to examine the roles of intra-ply hybridization and nano reinforcing.

Design/methodology/approach

This paper investigates the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of multiwall carbon nanotube (MWCNT) nano reinforcement to overcome the low fracture toughness of epoxy. A bending test is used to calculate the composites elastic parameters, and a notched sample three-point bending test is used to show crack behavior in addition to using materials characterization methods to reveal the effect of the MWCNT on structure, bonding, glass transition temperature (Tg) and dispersion of MWCNT in the matrix. Furthermore, this paper suggests using the finite element method to overcome the difficulty in calculating the crack extension.

Findings

Intra-ply hybridization and MWCNT reinforcement decrease the crack extension of epoxy with time. The inclusion of high-strength carbon fiber increased the fracture toughness of glass composite. Furthermore, the existence of MWCNT in the surrounding area of the notch in epoxy composites hinders crack propagation and provides stiffness at the interface by bridging the crack and eventually enhancing its fracture toughness.

Originality/value

Studying the role of intra-ply hybridization of glass-carbon woven fibers and adding 0.8 wt.% of MWCNT nano reinforcement to overcome the low fracture toughness of epoxy. Additionally, this research recommends using the finite element method to overcome the challenge of computing the crack extension.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 June 2023

Ghania Mirouzi and Amina Houda

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach…

Abstract

Purpose

The objective of this research is to evaluate the influence of mineral additions on the mechanical performances of polymer concrete. This study aims to propose a novel approach formulation of polymer concrete based on reduction in the quantity of the binder and disposal of large quantities of industrial by-products and household waste such as the marble, the brick and silica fume whose valuation in polymer concrete could be an interesting ecological and economical alternative. The incorporation of a rate of 10% brick powder affects the distribution of pores inside polymer concrete, that is, the pore diameters become thinner and decrease and the porosity becomes evenly distributed. The recycled mineral brick powder addition in polymer concrete mix improved the mechanical properties.

Design/methodology/approach

This polymer concrete was prepared by using polyester resin and two different types of sand, following a new formulation based on an empirical method. Furthermore, the optimal binder percentage was of 20% resin and a mixture of 52% dune sand and 48% quarry sand according to the Abrams method. To achieve our objective, five rates (from 2% to 10%) of brick powder, marble powder and silica fume were examined. Afterwards, its mechanical characteristics were evaluated via a three-point flexural with compressive resistance. The findings indicated that the addition of brick, marble and silica fume to polymer concrete increases the flexural strength with 21.84%, 12.76% and 9.07%, respectively.

Findings

Concerning the compressive strength, the best resistance is that of polymer concretes based on brick powder, and this economic formulation of polymer concrete serves the optimal cost/resistance ratio criteria. It allows an improvement in the mechanical resistance of concrete are obtained by adding brick powder that exceed that of the reference concrete.

Originality/value

In the past few decades, there has been several contribution concerning the subject of the reduction of the binder quantity in polymer concretes and adding the industrial and household wastes. However, previous studies revolving around the same area disregarded the effect of the brick powder, which appears scientifically of great importance for enriching the literature.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 28 February 2023

Manuel Jesus, Ana Sofia Guimarães, Bárbara Rangel and Jorge Lino Alves

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive…

1558

Abstract

Purpose

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive handcrafted techniques and scarce materials.

Design/methodology/approach

A compilation of different information on frequent anomalies in cultural heritage buildings and commonly used materials is conducted; subsequently, some innovative techniques used in the construction sector (3DP and 3D scanning) are addressed, as well as some case studies related to the rehabilitation of cultural heritage building elements, leading to a reflection on the opportunities and challenges of this application within these types of buildings.

Findings

The compilation of information summarised in the paper provided a clear reflection on the great potential of 3DP for cultural heritage rehabilitation, requiring the development of new mixtures (lime mortars, for example) compatible with the existing surface and, eventually, incorporating some residues that may improve interesting properties; the design of different extruders, compatible with the new mixtures developed and the articulation of 3D printers with the available mapping tools (photogrammetry and laser scanning) to reproduce the component as accurately as possible.

Originality/value

This paper sets the path for a new application of 3DP in construction, namely in the field of cultural heritage rehabilitation, by identifying some key opportunities, challenges and for designing the process flow associated with the different technologies involved.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of 16