Search results

1 – 10 of 270
Article
Publication date: 6 July 2015

R.V. Maheswari, B. Vigneshwaran and L. Kalaivani

The purpose of this paper is to investigate the condition of insulation in high-voltage equipments using partial discharge (PD) measurements. It proposes the methods to eliminate…

Abstract

Purpose

The purpose of this paper is to investigate the condition of insulation in high-voltage equipments using partial discharge (PD) measurements. It proposes the methods to eliminate several noises like white noise, random noise and discrete spectral interferences which severely pollutes the PD signals. The study aims to remove these noises from the PD signal effectively by preserving the signal features.

Design/methodology/approach

This paper employs fast Fourier transform, discrete wavelet transform and translational invariant wavelet transform (TIWT) for denoising the PD signals. The simulated damped exponential pulse and damped oscillatory pulse with low- and high-level noises and a measured PD signal are considered for this analysis. The conventional wavelet denoising approach is also improved by estimating the automated global optimum threshold value using genetic algorithm (GA). The statistical parameters are evaluated and compared. Among these methods, GA-based TIWT approach provides robustness and reduces computational complexity.

Findings

This paper provides effective condition monitoring of power apparatus using GA-based TIWT approach. This method provides the low value of mean square error, pulse amplitude distortion and also high reduction in noise level due to its robustness and reduced computational complexity. It suggests that this approach works well for both signals immersed in noise as well as for noise immersed in signals.

Research limitations/implications

Because of the chosen PD signals, the research results may lack for multiple discharges. Therefore, researchers are encouraged to test the proposed propositions further.

Practical implications

The paper includes implication for the development of online testing for equipment analysis and diagnostics during normal operating condition. Corrective actions can be planned and implemented, resulting in reduced unscheduled downtime.

Social implications

This PD-based analysis often present well in advance of insulation failure, asset managers can monitor it over time and make informed strategic decisions regarding the repair or replacement of the equipment. These predictive diagnostics help society to prioritize investments before an unexpected outage occurs.

Originality/value

This paper provides an enhanced study of condition monitoring of HV power apparatus by which life time of insulation can be increased by taking preventive measures.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 April 2023

Zhenzhen Shang, Libo Yang, Wendong Zhang, Guojun Zhang, Xiaoyong Zhang, Hairong Kou, Junbing Shi and Xin Xue

This paper aims to solve the problem that strong noise interference seriously affects the direction of arrival (DOA) estimation in complex underwater acoustic environment. In this…

Abstract

Purpose

This paper aims to solve the problem that strong noise interference seriously affects the direction of arrival (DOA) estimation in complex underwater acoustic environment. In this paper, a combined noise reduction algorithm and micro-electro-mechanical system (MEMS) vector hydrophone DOA estimation algorithm based on singular value decomposition (SVD), variational mode decomposition (VMD) and wavelet threshold denoising (WTD) is proposed.

Design/methodology/approach

Firstly, the parameters of VMD are determined by SVD, and the VMD method can decompose the signal into multiple intrinsic mode functions (IMFs). Secondly, the effective IMF component is determined according to the correlation coefficient criterion and the IMF less than the threshold is processed by WTD. Then, reconstruction is carried out to achieve the purpose of denoising and calibration baseline drift. Finally, DOA estimation is achieved by the combined directional algorithm of preprocessed signal.

Findings

Simulation and field experiments results show that the algorithm has good noise reduction and baseline drift correction effects for nonstationary underwater signals, and high-precision azimuth estimation is realized.

Originality/value

This research provides the basis for MEMS hydrophone detection and positioning and has great engineering significance in underwater detection system.

Article
Publication date: 13 April 2018

Xiaoting Guo, Changku Sun, Peng Wang and Lu Huang

This paper aims to propose a hybrid method based on polynomial fitting bias self-compensation, grey forward-backward linear prediction (GFBLP) and moving average filter (MAF) for…

Abstract

Purpose

This paper aims to propose a hybrid method based on polynomial fitting bias self-compensation, grey forward-backward linear prediction (GFBLP) and moving average filter (MAF) for error compensation in micro-electromechanical system gyroscope signal especially under motion state.

Design/methodology/approach

The error compensation can be divided into two processes: bias correction and noise reduction. A polynomial drift angle fitting algorithm is used to correct bias before denoising processing. For noise reduction, operation can be taken in two stages: detection and processing. First, sample variances are used to judge motion state. According to the detection results, algorithmic system switches between grey GFBLP and MAF to ensure fast convergence rate and small steady-state error.

Findings

Experimental results show that the proposed method can correct bias effectively for practical gyroscope signal, and can eliminate noise effectively for both practical gyroscope signal and synthetic signal, which indicates the effectiveness of the proposed method.

Originality/value

Bias correction and noise reduction are considerations. Noise contained in practical or synthetic signal can be reduced rapidly and effectively, which benefits from the new idea of combination grey GFBLP, MAF and sample variances. And most importantly, it is applicable for signal denoising under arbitrary motion state condition, which is different from other methods where the convergence performance is seldom analyzed.

Details

Sensor Review, vol. 38 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 April 2013

Weizhen Chen, Bingwen Wang, Hao Zhan and Long Zhou

Denoising of the vibration signal is crucial to identify a structure's damage. Based on noise frequency character, the “real” vibration signal can be gotten. The purpose of this…

Abstract

Purpose

Denoising of the vibration signal is crucial to identify a structure's damage. Based on noise frequency character, the “real” vibration signal can be gotten. The purpose of this paper is to propose a novel method for denoising a signal based on the wavelet transform.

Design/methodology/approach

The vibration signal with noise which can be collected by wireless network is decomposed by wavelet transform. In order to select optimal level of wavelet decomposition, based on noise's frequency, power spectral density is used. A soft thresholding method based on minimum mean‐variance is used for vibration signal de‐noising with Gaussian noise.

Findings

A novel method has been described in his paper. Based on the relationship between vibration signal's character and noise frequency, the way to get rid of noise is combined wavelet transform with power spectral density.

Originality/value

In order to select optimal level of wavelet decomposition, based on noise's frequency, power spectral density is used. A soft thresholding method based on minimum mean‐variance is used for vibration signal denoising with Gaussian noise.

Details

Kybernetes, vol. 42 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 March 2008

H. Ahmadi‐Noubari, A. Pourshaghaghy, F. Kowsary and A. Hakkaki‐Fard

The purpose of this paper is to reduce the destructive effects of existing unavoidable noises contaminating temperature data in inverse heat conduction problems (IHCP) utilizing…

Abstract

Purpose

The purpose of this paper is to reduce the destructive effects of existing unavoidable noises contaminating temperature data in inverse heat conduction problems (IHCP) utilizing the wavelets.

Design/methodology/approach

For noise reduction, sensor data were treated as input to the filter bank used for signal decomposition and implementation of discrete wavelet transform. This is followed by the application of wavelet denoising algorithm that is applied on the wavelet coefficients of signal components at different resolution levels. Both noisy and de‐noised measurement temperatures are then used as input data to a numerical experiment of IHCP. The inverse problem deals with an estimation of unknown surface heat flux in a 2D slab and is solved by the variable metric method.

Findings

Comparison of estimated heat fluxes obtained using denoised data with those using original sensor data indicates that noise reduction by wavelet has a potential to be a powerful tool for improvement of IHCP results.

Originality/value

Noise reduction using wavelets, while it can be implemented very easily, may also significantly relegate (or even eliminate) conventional regularization schemes commonly used in IHCP.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 August 2022

Xiangnan Liu and Kuanfang He

The purpose of this paper is to propose a new fault feature extraction scheme for the rolling element bearing.

Abstract

Purpose

The purpose of this paper is to propose a new fault feature extraction scheme for the rolling element bearing.

Design/methodology/approach

The generalized Stockwell transform (GST) and the singular value ratio spectrum (SVRS) methods are combined. A time-frequency distribution measurement criterion named the energy concentration measurement (ECM) is initially used to determine the parameter of the optimal GST method. Then, the optimal GST is applied to conduct a time-frequency transformation for a raw signal. Subsequently, the two-dimensional time-frequency matrix is obtained. Finally, the improved singular value decomposition (SVD) analysis is used to conduct a noise reduction of the time-frequency matrix. The SVRS is proposed to select the effective singular values. Furthermore, the time-domain feature of the impact signal is obtained by taking the inverse GST transform.

Findings

The simulated and experimental signals are used to verify the superiority of the proposed method over conventional methods. The obtained results show that the proposed method can effectively extract fault features of the rolling element bearing.

Research limitations/implications

This paper mainly discusses the application of GST and SVRS methods to analyze the weak fault feature extraction problem. The next research direction is to explore the application of the Hilbert Huang transform (HHT) and variational modal decomposition (VMD) in the impact feature extraction of rolling bearing.

Originality/value

In the present study, a new SVRS method is proposed to select the number of effective singular values. This paper proposed an effective way to obtain the fault feature in monitoring of rotating machinery.

Article
Publication date: 23 September 2019

H.S. Kumar, P. Srinivasa Pai and Sriram N. S

The purpose of this paper is to classify different conditions of the rolling element bearing (REB) using vibration signals acquired from a customized bearing test rig.

Abstract

Purpose

The purpose of this paper is to classify different conditions of the rolling element bearing (REB) using vibration signals acquired from a customized bearing test rig.

Design/methodology/approach

An effort has been made to develop health index (HI) based on singular values of the statistical features to classify different conditions of the REB. The vibration signals from the normal bearing (N), bearing with defect on ball (B), bearing with defect on inner race (IR) and bearing with defect on outer race (OR) have been acquired from a customized bearing test rig under variable load and speed conditions. These signals were subjected to “modified kurtosis hybrid thresholding rule” (MKHTR)-based denoising. The denoised signals were decomposed using discrete wavelet transform. A total of 17 statistical features have been extracted from the wavelet coefficients of the decomposed signal.

Findings

Singular values of the statistical features can be effectively used for REB classification.

Practical implications

REB are critical components of rotary machinery right across the industrial sectors. It is a well-known fact that critical bearing failures causes major breakdowns resulting in untold and most expensive downtimes that should be avoided at all costs. Hence, intelligently based bearing failure diagnosis and prognosis should be an integral part of the asset maintenance and management activity in any industry using rotary machines.

Originality/value

It is found that singular values of the statistical features exhibit a constant value and accordingly can be assigned to each type of bearing fault and can be used for fault characterization in practical applications. The effectiveness of this index has been established by applying this to data from Case Western Reserve University data base which is a standard bench mark data for this application. HIs minimizes the computation time when compared to fault diagnosis using soft computing techniques.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 9 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health…

Abstract

Purpose

The presence of random noise as well as narrow band coherent noise makes the structural health monitoring a really challenging issue and to achieve efficient structural health assessment methodology, very good extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of multimode Lamb waves through the noisy signal is investigated in the present analysis using matched filtering technique and wavelet denoising methods. Using Shannon’s entropy criterion, the optimal wavelet function is selected and verification is made via the analysis of root mean square error of filtered signal.

Findings

The authors propose wavelet matched filter method, a combination of the wavelet transform and matched filtering method, which can significantly improve the accuracy of the filtered signal and identify relatively small damage, especially in enormously noisy data. Correlation coefficient and root mean square error are additionally computed for performance evaluation of the filters.

Originality/value

The present study provides detailed information about various noise filtering methods and a first attempt to apply the combination of the different techniques in signal processing for the structural health monitoring application. A comparative study is performed using the statistical tool to know whether filtered signals obtained through three different methods are acceptable and practicable for guided wave application or not.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 8 April 2021

Huiliang Cao, Rang Cui, Wei Liu, Tiancheng Ma, Zekai Zhang, Chong Shen and Yunbo Shi

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD)…

Abstract

Purpose

To reduce the influence of temperature on MEMS gyroscope, this paper aims to propose a temperature drift compensation method based on variational modal decomposition (VMD), time-frequency peak filter (TFPF), mind evolutionary algorithm (MEA) and BP neural network.

Design/methodology/approach

First, VMD decomposes gyro’s temperature drift sequence to obtain multiple intrinsic mode functions (IMF) with different center frequencies and then Sample entropy calculates, according to the complexity of the signals, they are divided into three categories, namely, noise signals, mixed signals and temperature drift signals. Then, TFPF denoises the mixed-signal, the noise signal is directly removed and the denoised sub-sequence is reconstructed, which is used as training data to train the MEA optimized BP to obtain a temperature drift compensation model. Finally, the gyro’s temperature characteristic sequence is processed by the trained model.

Findings

The experimental result proved the superiority of this method, the bias stability value of the compensation signal is 1.279 × 10–3°/h and the angular velocity random walk value is 2.132 × 10–5°/h/vHz, which is improved compared to the 3.361°/h and 1.673 × 10–2°/h/vHz of the original output signal of the gyro.

Originality/value

This study proposes a multi-dimensional processing method, which treats different noises separately, effectively protects the low-frequency characteristics and provides a high-precision training set for drift modeling. TFPF can be optimized by SEVMD parallel processing in reducing noise and retaining static characteristics, MEA algorithm can search for better threshold and connection weight of BP network and improve the model’s compensation effect.

Article
Publication date: 12 April 2018

Ambuj Sharma, Sandeep Kumar and Amit Tyagi

The real challenges in online crack detection testing based on guided waves are random noise as well as narrow-band coherent noise; and to achieve efficient structural health…

Abstract

Purpose

The real challenges in online crack detection testing based on guided waves are random noise as well as narrow-band coherent noise; and to achieve efficient structural health assessment methodology, magnificent extraction of noise and analysis of the signals are essential. The purpose of this paper is to provide optimal noise filtering technique for Lamb waves in the diagnosis of structural singularities.

Design/methodology/approach

Filtration of time-frequency information of guided elastic waves through the noisy signal is investigated in the present analysis using matched filtering technique which “sniffs” the signal buried in noise and most favorable mother wavelet based denoising methods. The optimal wavelet function is selected using Shannon’s entropy criterion and verified by the analysis of root mean square error of the filtered signal.

Findings

Wavelet matched filter method, a newly developed filtering technique in this work and which is a combination of the wavelet transform and matched filtering method, significantly improves the accuracy of the filtered signal and identifies relatively small damage, especially in enormously noisy data. A comparative study is also performed using the statistical tool to know acceptability and practicability of filtered signals for guided wave application.

Practical implications

The proposed filtering techniques can be utilized in online monitoring of civil and mechanical structures. The algorithm of the method is easy to implement and found to be successful in accurately detecting damage.

Originality/value

Although many techniques have been developed over the past several years to suppress random noise in Lamb wave signal but filtration of interferences of wave modes and boundary reflection is not in a much matured stage and thus needs further investigation. The present study contains detailed information about various noise filtering methods, newly developed filtration technique and their efficacy in handling the above mentioned issues.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 270