Search results

1 – 2 of 2
Article
Publication date: 11 March 2020

Ali Kaveh and Ataollah Zaerreza

This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm.

Abstract

Purpose

This paper aims to present a new multi-community meta-heuristic optimization algorithm, which is called shuffled shepherd optimization algorithm (SSOA). In this algorithm.

Design/methodology/approach

The agents are first separated into multi-communities and the optimization process is then performed mimicking the behavior of a shepherd in nature operating on each community.

Findings

A new multi-community meta-heuristic optimization algorithm called a shuffled shepherd optimization algorithm is developed in this paper and applied to some attractive examples.

Originality/value

A new metaheuristic is presented and tested with some classic benchmark problems and some attractive structures are optimized.

Article
Publication date: 12 October 2020

Ali Kaveh, Hossein Akbari and Seyed Milad Hosseini

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of…

Abstract

Purpose

This paper aims to present a new physically inspired meta-heuristic algorithm, which is called Plasma Generation Optimization (PGO). To evaluate the performance and capability of the proposed method in comparison to other optimization methods, two sets of test problems consisting of 13 constrained benchmark functions and 6 benchmark trusses are investigated numerically. The results indicate that the performance of the proposed method is competitive with other considered state-of-the-art optimization methods.

Design/methodology/approach

In this paper, a new physically-based metaheuristic algorithm called plasma generation optimization (PGO) algorithm is developed for solving constrained optimization problems. PGO is a population-based optimizer inspired by the process of plasma generation. In the proposed algorithm, each agent is considered as an electron. Movement of electrons and changing their energy levels are based on simulating excitation, de-excitation and ionization processes occurring through the plasma generation. In the proposed PGO, the global optimum is obtained when plasma is generated with the highest degree of ionization.

Findings

A new physically-based metaheuristic algorithm called the PGO algorithm is developed that is inspired from the process of plasma generation.

Originality/value

The results indicate that the performance of the proposed method is competitive with other state-of-the-art methods.

Details

Engineering Computations, vol. 38 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2