Search results

1 – 2 of 2
To view the access options for this content please click here
Article
Publication date: 16 January 2017

Shervan Fekriershad and Farshad Tajeripour

The purpose of this paper is to propose a color-texture classification approach which uses color sensor information and texture features jointly. High accuracy, low noise…

Abstract

Purpose

The purpose of this paper is to propose a color-texture classification approach which uses color sensor information and texture features jointly. High accuracy, low noise sensitivity and low computational complexity are specified aims for this proposed approach.

Design/methodology/approach

One of the efficient texture analysis operations is local binary patterns (LBP). The proposed approach includes two steps. First, a noise resistant version of color LBP is proposed to decrease its sensitivity to noise. This step is evaluated based on combination of color sensor information using AND operation. In a second step, a significant points selection algorithm is proposed to select significant LBPs. This phase decreases final computational complexity along with increasing accuracy rate.

Findings

The proposed approach is evaluated using Vistex, Outex and KTH-TIPS-2a data sets. This approach has been compared with some state-of-the-art methods. It is experimentally demonstrated that the proposed approach achieves the highest accuracy. In two other experiments, results show low noise sensitivity and low computational complexity of the proposed approach in comparison with previous versions of LBP. Rotation invariant, multi-resolution and general usability are other advantages of our proposed approach.

Originality/value

In the present paper, a new version of LBP is proposed originally, which is called hybrid color local binary patterns (HCLBP). HCLBP can be used in many image processing applications to extract color/texture features jointly. Also, a significant point selection algorithm is proposed for the first time to select key points of images.

To view the access options for this content please click here
Article
Publication date: 16 August 2019

Neda Tadi Bani and Shervan Fekri-Ershad

Large amount of data are stored in image format. Image retrieval from bulk databases has become a hot research topic. An alternative method for efficient image retrieval…

Abstract

Purpose

Large amount of data are stored in image format. Image retrieval from bulk databases has become a hot research topic. An alternative method for efficient image retrieval is proposed based on a combination of texture and colour information. The main purpose of this paper is to propose a new content based image retrieval approach using combination of color and texture information in spatial and transform domains jointly.

Design/methodology/approach

Various methods are provided for image retrieval, which try to extract the image contents based on texture, colour and shape. The proposed image retrieval method extracts global and local texture and colour information in two spatial and frequency domains. In this way, image is filtered by Gaussian filter, then co-occurrence matrices are made in different directions and the statistical features are extracted. The purpose of this phase is to extract noise-resistant local textures. Then the quantised histogram is produced to extract global colour information in the spatial domain. Also, Gabor filter banks are used to extract local texture features in the frequency domain. After concatenating the extracted features and using the normalised Euclidean criterion, retrieval is performed.

Findings

The performance of the proposed method is evaluated based on the precision, recall and run time measures on the Simplicity database. It is compared with many efficient methods of this field. The comparison results showed that the proposed method provides higher precision than many existing methods.

Originality/value

The comparison results showed that the proposed method provides higher precision than many existing methods. Rotation invariant, scale invariant and low sensitivity to noise are some advantages of the proposed method. The run time of the proposed method is within the usual time frame of algorithms in this domain, which indicates that the proposed method can be used online.

Details

The Electronic Library , vol. 37 no. 4
Type: Research Article
ISSN: 0264-0473

Keywords

1 – 2 of 2