Search results

1 – 1 of 1
Article
Publication date: 8 February 2021

Jiajun Xu, Linsen Xu, Gaoxin Cheng, Jia Shi, Jinfu Liu, Xingcan Liang and Shengyao Fan

This paper aims to propose a bilateral robotic system for lower extremity hemiparesis rehabilitation. The hemiplegic patients can complete rehabilitation exercise…

Abstract

Purpose

This paper aims to propose a bilateral robotic system for lower extremity hemiparesis rehabilitation. The hemiplegic patients can complete rehabilitation exercise voluntarily with the assistance of the robot. The reinforcement learning is included in the robot control system, enhancing the muscle activation of the impaired limbs (ILs) efficiently with ensuring the patients’ safety.

Design/methodology/approach

A bilateral leader–follower robotic system is constructed for lower extremity hemiparesis rehabilitation, where the leader robot interacts with the healthy limb (HL) and the follow robot is worn by the IL. The therapeutic training is transferred from the HL to the IL with the assistance of the robot, and the IL follows the motion trajectory prescribed by the HL, which is called the mirror therapy. The model reference adaptive impedance control is used for the leader robot, and the reinforcement learning controller is designed for the follower robot. The reinforcement learning aims to increase the muscle activation of the IL and ensure that its motion can be mastered by the HL for safety. An asynchronous algorithm is designed by improving experience relay to run in parallel on multiple robotic platforms to reduce learning time.

Findings

Through clinical tests, the lower extremity hemiplegic patients can rehabilitate with high efficiency using the robotic system. Also, the proposed scheme outperforms other state-of-the-art methods in tracking performance, muscle activation, learning efficiency and rehabilitation efficacy.

Originality/value

Using the aimed robotic system, the lower extremity hemiplegic patients with different movement abilities can obtain better rehabilitation efficacy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1