Search results

1 – 10 of over 2000
Article
Publication date: 1 July 2020

Seyed Mohsen Hosseinian, Ali Mostafazade Abolmaali and Hossein Afshin

Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid…

Abstract

Purpose

Spiral-wound heat exchangers (SWHEs) are widely used in different industries. In special applications, such as cryogenic (HEs), fluid properties may significantly depend on fluid temperature. This paper aims to present an analytical method for design and rating of SWHEs considering variable fluid properties with consistent shell geometry and single-phase fluid.

Design/methodology/approach

To consider variations of fluid properties, the HE is divided into identical segments, and the fluid properties are assumed to be constant in each segment. Validation of the analytical method is accomplished by using three-dimensional numerical simulation with shear stress transport k-ω model, and the numerical model is verified by using the experimental data. Moreover, the HE cost is selected as the main criterion in obtaining the proper design, and the most affordable geometry is selected as the proper design.

Findings

The accuracy of different heat transfer and pressure drop correlations is investigated by comparing the analytical and numerical results. The average errors in the calculation of effectiveness, shell-side pressure drop and tube-side pressure drop using the analytical method are 2.1%, 13.9% and 13.3%, respectively. Moreover, the effect of five main geometrical parameters on the SWHE cost is investigated. The results indicate that the effect of longitudinal pitch ratio on the SWHE cost can be neglected, whereas other geometrical parameters have a significant impact on the total cost of the SWHE.

Originality/value

This work contains a versatile and low-cost analytical method to design and rating the SWHEs considering the variable fluid property with consistent shell geometry. The previous studies have introduced complex methods and have not considered the consistency of shell geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 October 2018

Salvatore Brischetto

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The…

Abstract

Purpose

The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The comparison is proposed for different structures (plates, cylinders, cylindrical and spherical shells), lamination sequences (cross-ply laminates and sandwiches with composite skins) and thickness ratios. The purpose of this paper is to understand if linoleum fibres could be useful for some specific aerospace applications.

Design/methodology/approach

A general exact three-dimensional shell model is used for the static analysis of the proposed structures to obtain displacements and stresses through the thickness. The shell model is based on a layer-wise approach and the differential equations of equilibrium are solved by means of the exponential matrix method.

Findings

In qualitative terms, composites including linoleum fibres have a mechanical behaviour similar to composites including glass or carbon fibres. In terms of stress and displacement values, composites including linoleum fibres can be used in aerospace applications with limited loads. They are comparable with composites including glass fibres. In general, they are not competitive with respect to composites including carbon fibres. Such conclusions have been verified for different structure geometries, lamination sequences and thickness ratios.

Originality/value

The proposed general exact 3D shell model allows the analysis of different geometries (plates and shells), materials and laminations in a unified manner using the differential equilibrium equations written in general orthogonal curvilinear coordinates. These equations written for spherical shells degenerate in those for cylinders, cylindrical shell panels and plates by means of opportune considerations about the radii of curvature. The proposed shell model allows an exhaustive comparison between different laminated and sandwich composite structures considering the typical zigzag form of displacements and the correct imposition of compatibility conditions for displacements and equilibrium conditions for transverse stresses.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 May 2003

Neri Volpato and Thomas H.C. Childs

Selective laser sintering can be used to manufacture injection mould inserts using an indirect metal laser sintering process, such as the RapidTool™ process commercialised by 3D…

Abstract

Selective laser sintering can be used to manufacture injection mould inserts using an indirect metal laser sintering process, such as the RapidTool™ process commercialised by 3D Systems. The volume of material to be laser processed for insert manufacturing is very high when compared to that for plastic prototype manufacturing. Consequently, the time involved in the laser processing is also very long. This paper describes the development and assessment of shelling strategies to be applied in an indirect rapid tooling process aimed at reducing time in the process. The feasibility of the shelling idea has been confirmed and although the scanning system offers some limitations to the idea two strategies are presented as successful, open shell and closed shell, with a great potential to save time.

Details

Rapid Prototyping Journal, vol. 9 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 March 2018

Ivana Uzelac, Hrvoje Smoljanovic, Milko Batinic, Bernardin Peroš and Ante Munjiza

This paper aims to present a new numerical model for geometric nonlinear analysis of thin-shell structures based on a combined finite-discrete element method (FDEM).

Abstract

Purpose

This paper aims to present a new numerical model for geometric nonlinear analysis of thin-shell structures based on a combined finite-discrete element method (FDEM).

Design/methodology/approach

The model uses rotation-free, three-node triangular finite elements with exact formulation for large rotations, large displacements in conjunction with small strains.

Findings

The presented numerical results related to behaviour of arbitrary shaped thin shell structures under large rotations and large displacement are in a good agreement with reference solutions.

Originality/value

This paper presents new computationally efficient numerical model for geometric nonlinear analysis and prediction of the behaviour of thin-shell structures based on combined FDEM. The model is implemented into the open source FDEM package “Yfdem”, and is tested on simple benchmark problems.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1989

Nielen Stander, Anton Matzenmiller and Ekkehard Ramm

A critical assessment of the 4‐node assumed strain element as proposed by Dvorkin and Bathe is made. The element performed excellently in all investigated shell problems which…

Abstract

A critical assessment of the 4‐node assumed strain element as proposed by Dvorkin and Bathe is made. The element performed excellently in all investigated shell problems which sometimes caused difficulties for other assumed strain techniques. For efficient computation in the non‐linear range, linearization of the virtual work equation is done to yield the consistent tangent stiffness. The shell formulation is done for stress and strain tensors based on local element coordinates. To demonstrate the effectiveness and rapid convergence of the non‐linear formulation, three examples are tested for large displacements.

Details

Engineering Computations, vol. 6 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 June 2005

S.M.B. Afonso, J. Sienz and F. Belblidia

Shells are widely used structural systems in engineering practice. These structures have been used in the civil, automobile and aerospace industries. Many shells are designed…

1191

Abstract

Purpose

Shells are widely used structural systems in engineering practice. These structures have been used in the civil, automobile and aerospace industries. Many shells are designed using the finite element analysis through the conventional and costly trial and error scheme. As a more efficient alternative, optimization procedures can be used to design economic and safe structures.

Design/methodology/approach

This paper presents developments, integration and applications of reliable and efficient computational tools for the structural optimization of variable thickness plates and free‐form shells. Topology, sizing and shape optimization procedures are considered here. They are applied first as isolated subjects. Then these tools are combined to form a robust and reliable fully integrated design optimization tool to obtain optimum designs. The unique feature is the application of a flexible integrally stiffened plate and shell formulation to the design of stiffened plates and shells.

Findings

This work showed the use of different optimization strategies to obtain an optimal design for plates and shells. Both topology optimization (TO) and structural shape optimization procedures were considered. These two optimization applications, as separate procedures produce new designs with a great improvement when compared to the initial designs. However, the combination of stiffening TO and sizing optimization using integrally stiffened shells appears as a more attractive tool to be used. This was illustrated with several examples.

Originality/value

This work represents a novel approach to the design of optimally stiffened shells and overcomes the drawbacks of both topology optimization and structural shape optimization procedures when applied individually. Furthermore, the unique use of integrally stiffened shell elements for optimization, unlike conventional shell‐stiffening optimization techniques, provided a general and extremely flexible tool.

Details

Engineering Computations, vol. 22 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2020

Ali Akbar Abbasian Arani and Hamed Uosofvand

This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach by…

Abstract

Purpose

This paper aims to investigate the fluid flow and heat transfer of a laboratory shell and tube heat exchanger that are analyzed using computational fluid dynamic approach by SOLIDWORKS flow simulation (ver. 2015) software.

Design/methodology/approach

In this study, several types of baffle including segmental baffle, butterfly baffle, helical baffle, combined helical-segmental baffle, combined helical-disk baffle and combined helical-butterfly baffle are examined. Two important parameters as the heat transfer and pressure drop are evaluated and analyzed. Based on obtained results, segmental baffle has the highest amount of heat transfer and pressure drop. To assess the integrative performance, performance coefficient defines as “Q/Δp” is used.

Findings

This investigation showed that among the presented baffle types, the heat exchangers equipped with disk baffle has the highest heat transfer. In addition, in the same mass flow rate, the performance coefficient of the shell and tube heat exchanger equipped with helical-butterfly baffle is the highest among the proposed models.

Originality/value

After combined helical-butterfly baffle the butterfly baffle, disk baffle, helical-segmental baffle and helical-disk baffle show their superiority of 35.12, 25, 22 and 12 per cent rather than the common segmental baffle, respectively. Furthermore, except for the combined helical-disk baffle, the other type of combined baffle have better performance compare to the basic configuration (butterfly and segmental baffle).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 1995

J. Sorić and I. Smojver

A linear and geometrically non‐linear computation of a laminatedcomposite torispherical shell subjected to internal pressure was performed byusing the layered finite element whose…

Abstract

A linear and geometrically non‐linear computation of a laminated composite torispherical shell subjected to internal pressure was performed by using the layered finite element whose formulation is based on degeneration principle. Geometric non‐linearity in terms of large deformations with total Lagrangian formulation was taken into account. The effect of the lamination schemes on geometric non‐linear behaviour and stress resultant distributions was analysed. The fibre directions have not a great influence on the shape of the load‐displacement curves. In contrast to the hoop stress resultant distribution, the moment distribution is significantly influenced by the lamination schemes. The influence of the lamination schemes on bending moments is greater in non‐linear than in linear computations. Likewise, the effect of the fibre orientation is greater on the hoop than on the meridional moment distribution. In unsymmetric laminated shells the values of the hoop moments exceed those of the meridional moments which is a considerable difference from metallic isotropic shells.

Article
Publication date: 8 January 2020

Mohammad Amin Shahmohammadi, Mojtaba Azhari, Mohammad Mehdi Saadatpour and Saeid Sarrami-Foroushani

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main…

Abstract

Purpose

This paper aims to analyze the stability of laminated shells subjected to axial loads or external pressure with considering various geometries and boundary conditions. The main aim of the present study is developing an efficient combined method which uses the advantages of different methods, such as finite element method (FEM) and isogeometric analysis (IGA), to achieve multipurpose targets. Two types of material including laminated composite and sandwich functionally graded material are considered.

Design/methodology/approach

A novel type of finite strip method called isogeometric B3-spline finite strip method (IG-SFSM) is used to solve the eigenvalue buckling problem. IG-SFSM uses B3-spline basis functions to interpolate the buckling displacements and mapping operations in the longitudinal direction of the strips, whereas the Lagrangian functions are used in transverse direction. The current presented IG-SFSM is formulated based on the degenerated shell method.

Findings

The buckling behavior of laminated shells is discussed by solving several examples corresponding to shells with various geometries, boundary conditions and material properties. The effects of mechanical and geometrical properties on critical loads of shells are investigated using the related results obtained by IG-SFSM.

Originality/value

This paper shows that the proposed IG-SFSM leads to the critical loads with an approved accuracy comparing with the same examples extracted from the literature. Moreover, it leads to a high level of convergence rate and low cost of solving the stability problems in comparison to the FEM.

Details

Engineering Computations, vol. 37 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1992

E. HINTON, N.V.R. RAO and J. SIENZ

This paper deals with structural shape and thickness optimization of axisymmetric shell structures loaded symmetrically. In the finite element stress analysis use is made of newly…

Abstract

This paper deals with structural shape and thickness optimization of axisymmetric shell structures loaded symmetrically. In the finite element stress analysis use is made of newly developed linear, quadratic, and cubic, variable thickness, C(0) elements based on axisymmetric Mindlin‐Reissner shell theory. An integrated approach is used to carry out the whole shape optimization process in a fully automatic manner. A robust, versatile and flexible mesh generator is incorporated with facilities for generating either uniform or graded meshes, with constant, linear, or cubic variation of thickness, pressure etc. The midsurface geometry and thickness variations of the axisymmetric shell structure are defined using cubic splines passing through certain key points. The design variables are chosen as the coordinates and/or the thickness at the key points. Variable linking procedures are also included. Sensitivity analysis is carried out using either a semi‐analytical method or a global finite difference method. The objective of the optimization is the weight minimization of the structure. Several examples are presented illustrating optimal shapes and thickness distributions for various shells. The changes in the bending, membrane and shear strain energies during the optimization process are also monitored.

1 – 10 of over 2000