Search results

1 – 10 of 46
Article
Publication date: 1 December 2023

Zhe Du, Changjie Chen and Xinhou Wang

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This…

Abstract

Purpose

Stab-resistant body armor (SRBA) is used to protect the body from sharp knives. However, most SRBA materials currently have the disadvantages of large weight and thickness. This paper aims to prepare lightweight and high-performance SRBA by 3D printing truss structure and resin-filling method.

Design/methodology/approach

The stab resistance truss structure was prepared by the fused deposition modeling method, and the composite structure was formed after filling with resin for dynamic and quasi-static stab tests. The optimized structural plate can meet the standard GA68-2019. Digital image correlation technology was used to analyze the local strain changes during puncture. The puncture failure mode was summarized by the final failure morphologies. The explicit dynamics module in ANSYS Workbench was used to analyze the design of the overlapped structure stab resistance process in this paper.

Findings

The stab resistance performance of the 3D-printed structural plate is affected by the internal filling pattern. The stab resistance performance of 3D-printed structural parts was significantly improved after resin filling. The 50%-diamond-PLA-epoxy, with a thickness of only 5 mm was able to meet the stab resistance standard. Resins are used to increase the strength and hardness of the material but also to increase crack propagation and reduce the toughness of the material. The overlapping semicircular structure was inspired by the exoskeleton structure of the demon iron beetle, which improved the stab resistance between gaps. The truss structure can effectively disperse stress for toughening. The filled resin was reinforced by absorbing impact energy.

Originality/value

The 3D-printed resin-filled truss structure can be used to prepare high-performance stab resistance structural plates, which balance the toughness and strength of the overall structure and ultimately reduce the thickness and weight of the SRBA.

Article
Publication date: 9 January 2023

Ying Ling Jin, Fatimah De’nan, Kok Keong Choong and Nor Salwani Hashim

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports…

Abstract

Purpose

Cold-formed steel has been used extensively as secondary elements such as purlins and girts in building frames. Purlin is critical to the structure of the roof because it supports the weight of the roof deck and aids to make the entire roof structure more rigid. Furthermore, cold-formed steel purlin is a replacement for wood purlin because steel purlins are light weight and more economical. Hence, the purpose of this study to investigate the effect of opening due to torsion behaviour.

Design/methodology/approach

This analysis used cold-formed steel hat purlin with and without openings (WOs) under different opening shape, location and spacing by using finite element LUSAS software.

Findings

The finite element results showed that purlin with openings had higher angle of rotation than section WO, with a percentage difference of not more than 6%. When the opening was located at mid-span, the angle of rotation reduced. Angle of rotation increased when the opening spacing increased. Number of openings also affected the torsional behaviour of the purlin. Five opening shapes, which were circle, diamond, C-hexagon, square and elongated circle, were studied. Among all the shapes, purlin with diamond opening was more resistance to torsion.

Originality/value

The use of cold-formed steel section with web openings (rectangular or circular) is a practical solution when it is required to pass service ducts through the structural member. However, the presence of opening gives minor effect on the structural behaviour of cold-formed steel hat purlin.

Details

World Journal of Engineering, vol. 21 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 2 March 2023

Aamir Hassan and Javed Ahmad Bhat

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared…

Abstract

Purpose

Concrete-filled double skin tube (CFDST) columns are considered one of the most effective steel-concrete composite sections owing to the higher load carrying capacity as compared to its counterpart concrete-filled tube (CFT) columns. This paper aims to numerically investigate the performance of axially loaded, circular CFDST short columns, with the innovative strengthening technique of providing stiffeners in outer tubes. Circular steel hollow sections have been adopted for inner as well as outer tubes, while varying the length of rectangular steel stiffeners, fixed inside the outer tubes only, to check the effect of stiffeners in partially and full-length stiffened CFDST columns.

Design/methodology/approach

The behaviour of these CFDST columns is investigated numerically by using a verified finite element analysis (FEA) model from the ABAQUS. The behaviour of 20-unstiffened, 80-partially stiffened and 20-full-length stiffened CFDST columns is studied, while varying the strength of steel (fyo = 250–750 MPa) and concrete (30–90 MPa).

Findings

The FEA results are verified by comparing them with the previous test results. FEA study has exhibited that, there is a 7%–25% and 39%–49% increase in peak-loads in partially stiffened and full-length stiffened CFDST columns, respectively, compared to unstiffened CFDST columns.

Originality/value

Enhanced strength has been observed in partially stiffened and full-length stiffened CFDST columns as compared to unstiffened CFDST columns. Also, a significant effect of strength of concrete has not been observed as compared to the strength of steel.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 January 2024

Yunfei Zou

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and…

Abstract

Purpose

This study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.

Design/methodology/approach

DIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.

Findings

The experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.

Practical implications

The stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.

Originality/value

This research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 March 2024

Hesam Ketabdari, Amir Saedi Daryan, Nemat Hassani and Mohammad Safi

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Abstract

Purpose

In this paper, the seismic behavior of the gusset plate moment connection (GPMC) exposed to the post-earthquake fire (PEF) is investigated.

Design/methodology/approach

For this purpose, for the sake of verification, first, a numerical model is built using ABAQUS software and then exposed to earthquakes and high temperatures. Afterward, the effects of a series of parameters, such as gusset plate thickness, gap width, steel grade, vertical load value and presence of the stiffeners, are evaluated on the behavior of the connection in the PEF conditions.

Findings

Based on the results obtained from the parametric study, all parameters effectively played a role against the seismic loads, although, when exposed to fire, it was found that the vertical load value and presence of the stiffener revealed a great contribution and the other parameters could not significantly affect the connection performance. Finally, to develop the modeling and further study the performance of the connection, the 4 and 8-story frames are subjected to 11 accelerograms and 3 different fire scenarios. The findings demonstrate that high temperatures impose rotations on the structure, such that the story drifts were changed compared to the post-earthquake drift values.

Originality/value

The obtained results can be used by engineers to design the GPMC for the combined action of earthquake and fire.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 February 2024

Yasser M. Mater, Ahmed A. Elansary and Hany A. Abdalla

The use of recycled coarse aggregate in concrete structures promotes environmental sustainability; however, performance of these structures might be negatively impacted when it is…

Abstract

Purpose

The use of recycled coarse aggregate in concrete structures promotes environmental sustainability; however, performance of these structures might be negatively impacted when it is used as a replacement to traditional aggregate. This paper aims to simulate recycled concrete beams strengthened with carbon fiber-reinforced polymer (CFRP), to advance the modeling and use of recycled concrete structures.

Design/methodology/approach

To investigate the performance of beams with recycled coarse aggregate concrete (RCAC), finite element models (FEMs) were developed to simulate 12 preloaded RCAC beams, strengthened with two CFRP strengthening schemes. Details of the modeling are provided including the material models, boundary conditions, applied loads, analysis solver, mesh analysis and computational efficiency.

Findings

Using FEM, a parametric study was carried out to assess the influence of CFRP thickness on the strengthening efficiency. The FEM provided results in good agreement with those from the experiments with differences and standard deviation not exceeding 11.1% and 3.1%, respectively. It was found that increasing the CFRP laminate thickness improved the load-carrying capacity of the strengthened beams.

Originality/value

The developed models simulate the preloading and loading up to failure with/without CFRP strengthening for the investigated beams. Moreover, the models were validated against the experimental results of 12 beams in terms of crack pattern as well as load, deflection and strain.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 11 January 2024

Burak Kiyak, Hakan Fehmi Oztop and Ishak Gökhan Aksoy

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container…

Abstract

Purpose

The purpose of this study is to examine the effects of inclination angle on the thermal energy storage capability of a phase change material (PCM) within a disc-shaped container. Different container materials are also tested such as plexiglass and aluminium. This study aims to assess the energy storage capacity, melting behaviour and temperature distributions of PCM with a specific melting range (22°C–26°C) for various governing parameters such as inclination angles, aspect ratios (AR) and temperature differences (ΔT) and compare the melting behaviour and energy storage performance of PCM in aluminium containers to those in plexiglass containers.

Design/methodology/approach

A finite volume approach was adopted to evaluate the thermal energy storage capability of PCMs. Five inclination angles ranging from 0° to 180° were considered and the energy storage capacity. Also, the melting behaviour of the PCM and temperature distributions of the container with different materials were tested. Two different AR and ΔT values were chosen as parameters to analyse for their effects on the melting performance of the PCM. Conjugate heat transfer problem is solved to see the effects of conduction mode of heat transfer.

Findings

The results of the study indicate that as AR decreases, the effect of the inclination angles on the energy storage capacity of the PCM decreases. For lower ΔT, the difference between the maximum and minimum stored energies was 20.88% for AR = 0.20, whereas it was 6.85% for AR = 0.15. Furthermore, under the same conditions, the PCM stored 8.02% more energy in plexiglass containers than in aluminium containers.

Originality/value

This study contributes to the understanding of the influence of inclination angle, container material, AR and ΔT on the thermal energy storage capabilities of PCM in a novel designed container. The findings highlight the importance of AR in mitigating the effect of the inclination angle on energy storage capacity. Additionally, comparing aluminium and plexiglass containers provides insights into the effect of container material on the melting behaviour and energy storage properties of PCM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2024

Felipe Sales Nogueira, João Luiz Junho Pereira and Sebastião Simões Cunha Jr

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg…

20

Abstract

Purpose

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm and test the sensors' configuration found in a delamination identification case study.

Design/methodology/approach

This work aims to study the damage identification in an aircraft wing using the Lichtenberg and multi-objective Lichtenberg algorithms. The former is used to identify damages, while the last is associated with feature selection techniques to perform the first sensor placement optimization (SPO) methodology with variable sensor number. It is applied aiming for the largest amount of information about using the most used modal metrics in the literature and the smallest sensor number at the same time.

Findings

The proposed method was not only able to find a sensor configuration for each sensor number and modal metric but also found one that had full accuracy in identifying delamination location and severity considering triaxial modal displacements and minimal sensor number for all wing sections.

Originality/value

This study demonstrates for the first time in the literature how the most used modal metrics vary with the sensor number for an aircraft wing using a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm.

Article
Publication date: 22 March 2024

Mohammad Dehghan Afifi, Bahram Jalili, Amirmohammad Mirzaei, Payam Jalili and Davood Ganji

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds…

Abstract

Purpose

This study aims to analyze the two-dimensional ferrofluid flow in porous media. The effects of changes in parameters such as permeability parameter, buoyancy parameter, Reynolds and Prandtl numbers, radiation parameter, velocity slip parameter, energy dissipation parameter and viscosity parameter on the velocity and temperature profile are displayed numerically and graphically.

Design/methodology/approach

By using simplification, nonlinear differential equations are converted into ordinary nonlinear equations. Modeling is done in the Cartesian coordinate system. The finite element method (FEM) and the Akbari-Ganji method (AGM) are used to solve the present problem. The finite element model determines each parameter’s effect on the fluid’s velocity and temperature.

Findings

The results show that if the viscosity parameter increases, the temperature of the fluid increases, but the velocity of the fluid decreases. As can be seen in the figures, by increasing the permeability parameter, a reduction in velocity and an enhancement in fluid temperature are observed. When the Reynolds number increases, an increase in fluid velocity and temperature is observed. If the speed slip parameter increases, the speed decreases, and as the energy dissipation parameter increases, the temperature also increases.

Originality/value

When considering factors like thermal conductivity and variable viscosity in this context, they can significantly impact velocity slippage conditions. The primary objective of the present study is to assess the influence of thermal conductivity parameters and variable viscosity within a porous medium on ferrofluid behavior. This particular flow configuration is chosen due to the essential role of ferrofluids and their extensive use in engineering, industry and medicine.

1 – 10 of 46