Search results

1 – 10 of over 8000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 June 2015

Ismail Durgun

The purpose of this paper is to investigate usage of fused deposition modeling (FDM)-based sheet metal tooling for small lot productions as a real case. FDM-based sheet metal

1556

Abstract

Purpose

The purpose of this paper is to investigate usage of fused deposition modeling (FDM)-based sheet metal tooling for small lot productions as a real case. FDM-based sheet metal tooling was used for stamping prototype parts for two different materials to evaluate dimensional conformance.

Design/methodology/approach

The experimental process of data capture used the following steps: sheet metal parts were stamped and optically scanned at every 10th interval for both DC04 and S355MC material. FDM-based upper and lower dies were optically scanned at 1st, 51st and 101st intervals. Dimensional conformance analyses were carried out by using scanned data to evaluate the behavior of FDM dies against DC04 and S355MC materials in terms of geometric deviation.

Findings

Satisfactory results were obtained for DC04 material by using FDM-based tooling, and overall deviation was at an acceptable level in terms of production tolerance. S355MC material is harder than DC04 and results were not convenient in terms of tolerance range. Geometric deviation of FDM dies was slightly increased and after the 50th part, increased drastically due to squeezing of FDM layers. Experiments showed that this method can be used for DC04 material and up to 100 parts can be stamped within the tolerance range. Using FDM-based sheet metal tooling, product development phase can be shortened in terms of leading time.

Originality/value

This paper presents a study to create an alternative tooling method to shorten product cycle and product development phase by integrating rapid tooling methods to low-volume production.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 1943

William Schroeder and Thomas H. Hazlett

THE modern aeroplane is constructed largely from sheet metal. As such, the most important production problems are those of sheet metal forming, and assembling. Production is here…

Abstract

THE modern aeroplane is constructed largely from sheet metal. As such, the most important production problems are those of sheet metal forming, and assembling. Production is here considered as not only the act of forming and assembling the required number of parts, but also the making of forming tools, and all processing of parts such as heat‐treating. Only that phase of the above concept of production which deals with the tooling for production and the forming and heat‐treating will be considered here. The design of the aircraft parts will also be discussed somewhat, for it is obvious that the design of the part (designed shape and materials used) frequently determines whether the part can or cannot be readily made.

Details

Aircraft Engineering and Aerospace Technology, vol. 15 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 December 2004

Jaroslav Mackerle

Sheet metal forming is a process of shaping thin sheets of metal by applying pressure through male or female dies or both. In most of used sheet‐formating processes the metal is…

4536

Abstract

Sheet metal forming is a process of shaping thin sheets of metal by applying pressure through male or female dies or both. In most of used sheet‐formating processes the metal is subjected to primarily tensile or compressive stresses or both. During the last three decades considerable advances have been made in the applications of numerical techniques, especially the finite element methods, to analyze physical phenomena in the field of structural, solid and fluid mechanics as well as to simulate various processes in engineering. These methods are useful because one can use them to find out facts or study the processes in a way that no other tool can accomplish. Finite element methods applied to sheet metal forming are the subjects of this paper. The reason for writing this bibliography is to save time for readers looking for information dealing with sheet metal forming, not having an access to large databases or willingness to spend own time with uncertain information retrieval. This paper is organized into two parts. In the first one, each topic is handled and current trends in the application of finite element techniques are briefly mentioned. The second part, an Appendix, lists papers published in the open literature. More than 900 references to papers, conference proceedings and theses/dissertations dealing with subjects that were published in 1995‐2003 are listed.

Details

Engineering Computations, vol. 21 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 September 2009

Sun Jin, Kuigang Yu, Xinmin Lai and Yinhua Liu

The purpose of this paper is to focus on optimal sensor placement for the fixture variation diagnosis of compliant sheet metal assembly process. Fixture variations are the main…

1274

Abstract

Purpose

The purpose of this paper is to focus on optimal sensor placement for the fixture variation diagnosis of compliant sheet metal assembly process. Fixture variations are the main sources for complex automotive body dimensional failures. An effective measurement strategy can help exactly and timely diagnose these fixture variations. Research on sensor placement strategy of compliant sheet metal assembly process is not much stated formerly.

Design/methodology/approach

The impact principle of fixture variations is analyzed to set up the relationship between the assembly variation and fixture variations applying the method of influence coefficients and the effective independence (EI) method is used to find the optimal sensor positions based on the impact principle analysis of fixture variations.

Findings

The obtained fixture variation sensitivity matrix describes the influence of fixture variations to compliant sheet metal assembly variation and can be used for diagnosing fixture variations. The EI method can effectively solve the optimal sensor positions for compliant sheet metal assembly by a case demonstration.

Originality/value

The proposed method can solve the sensor placement of online assembly station for diagnosing fixture variations. It takes the compliant characteristics of sheet metal parts into account and the sensor information has much greater diagnosability than that from applying other methods.

Details

Assembly Automation, vol. 29 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 August 2008

Kuigang Yu, Sun Jin, Xinmin Lai and Yanfeng Xing

Material variation is inevitable in volume production, especially the sheet metal thickness variation, which influences part stiffness characteristic. The purpose of this paper is…

1021

Abstract

Purpose

Material variation is inevitable in volume production, especially the sheet metal thickness variation, which influences part stiffness characteristic. The purpose of this paper is to present a new variation model of compliant sheet metal assembly with consideration of material variation influence.

Design/methodology/approach

The theory of computational solid mechanics is used to obtain the relationship between part stiffness matrix and material characteristic. The method of influence coefficients is adopted to deduce the assembly variation model.

Findings

Material variation‐induced influence coefficients to assembly variation are obtained, and a variation model of compliant sheet metal assembly with sources of material variations, part geometric variations and fixture variations is presented. Analysis shows that material variation has an important influence to assembly variations.

Originality/value

A quantitative relationship between assembly variations and material thickness variations is firstly given and a new variation model of compliant sheet metal assembly is presented to help designers to more exactly predict the assembly variation and diagnose variation sources.

Details

Assembly Automation, vol. 28 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 4 July 2008

M. Sedighi and M.S. Abolghasemi

Traditional procedures in flat pattern design of aircraft sheet metal parts are generally based on technicians' personal idea and experiences which can cause unwanted…

Abstract

Purpose

Traditional procedures in flat pattern design of aircraft sheet metal parts are generally based on technicians' personal idea and experiences which can cause unwanted inconsistency and errors. The main objective of this paper is to present an automated system for decreasing the time and increasing the accuracy in providing templates used in aircraft sheet metal parts manufacturing.

Design/methodology/approach

The paper discusses the software (Developer) which is able to receive 2D drawing of a part and create the flat pattern template after applying the necessary changes. The system is also capable of supplying other components of sheet metal part template such as support, tooling hole, and lightening hole. AutoLISP has been used as a tool for internal access to a commercial software such as AutoCAD. An interface has been written by Visual Basic for Application (VBA) to enable the user easily to apply the subroutines related to the software system.

Findings

Several algorithms have been developed and the necessary subroutines have been written in an integrated user‐friendly package. To clarify the process and its application, an application example is demonstrated.

Originality/value

The paper can provide automatically components that are not originally provided in other commercial software. It also has the ability to calculate spring‐back and provide unfold drawing. The known standard templates can also be created.

Details

Aircraft Engineering and Aerospace Technology, vol. 80 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 29 July 2014

Yanfeng Xing and Yansong Wang

The purpose of this paper is to propose a new assembly variation analysis model to analyze assembly variation for sheet metal parts. The main focus is to analyze assembly…

1755

Abstract

Purpose

The purpose of this paper is to propose a new assembly variation analysis model to analyze assembly variation for sheet metal parts. The main focus is to analyze assembly processes based on the method of power balance.

Design/methodology/approach

Starting with issues in assembly variation analysis, the review shows the critical aspects of tolerance analysis. The method of influence coefficient (MIC) cannot accurately analyze the relationship between part variations and assembly variations, as the welding point is not a point but a small area. Therefore, new sensitivity matrices are generated based on the method of power balance.

Findings

Here two cases illustrate the processes of assembly variation analysis, and the results indicate that new method has higher accuracy than the MIC.

Research limitations/implications

This study is limited to assembly variation analysis for sheet metal parts, which can be used in auto-body and airplane body.

Originality/value

This paper provides a new assembly variation analysis based on the method of power balance.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 11 March 2014

Paolo Minetola and Luca Iuliano

– The purpose of this paper is to present a custom-built tribometer that mimics the wear of additive manufactured fixtures used in inspection of sheet metal components.

Abstract

Purpose

The purpose of this paper is to present a custom-built tribometer that mimics the wear of additive manufactured fixtures used in inspection of sheet metal components.

Design/methodology/approach

Referring to the inspection of sheet metal parts, the fixture undergoes sliding wear during loading and unloading phases of the quality control operation. A new wear test is proposed to mimic the actual wearing conditions of the fixtures because the standards are deemed insufficient. In the tribometer, a cylindrical Alumide cantilever beam is made to slide back and forth inside a slightly bigger hole cut into a nickel-plated steel sheet. The sheet is spring loaded such that it applies a force on the specimen. The wear on the beam is measured after every 500 cycles of the beam motion.

Findings

Results of some first test trials are reported to evaluate the durability of Alumide fixtures fabricated by selective laser sintering. The results are also compared to those obtained for a machined fixture made of an Al-Cu alloy.

Practical implications

The proposed wear test estimates the life time of additive manufactured fixtures in terms of numbers of inspected components. The test can be extended to different materials to compare their durability.

Originality/value

Today, the fabrication of custom fixtures by means of additive manufacturing technologies is a reality in many manufacturing industries. The advantage of using those production technologies for custom fixtures is well assessed in literature in terms of manufacturing times and costs, whereas little attention was given to the life time and wear behaviour of fabricated fixtures. For its practical implication, the fixture durability is indeed very important for manufactures.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 8000