Search results

1 – 10 of over 18000
Article
Publication date: 12 May 2021

P.S. Liu and X.M. Ma

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings…

Abstract

Purpose

The purpose of this paper is to provide a summarization and review of the present author's main investigations on failure modes of reticular metal foams under different loadings in engineering applications.

Design/methodology/approach

With the octahedral structure model proposed by the present authors themselves, the fundamentally mechanical relations have been systematically studied for reticular metal foams with open cells in their previous works. On this basis, such model theory is continually used to investigate the failure mode of this kind of porous materials under compression, bending, torsion and shearing, which are common loading forms in engineering applications.

Findings

The pore-strut of metal foams under different compressive loadings will fail in the tensile breaking mode when it is brittle. While it is ductile, it will tend to the shearing failure mode when the shearing strength is half or nearly half of the tensile strength for the corresponding dense material and to the tensile breaking mode when the shearing strength is higher than half of the tensile strength to a certain value. The failure modes of such porous materials under bending, torsional and shearing loads are also similarly related to their material species.

Originality/value

This paper presents a distinctive method to conveniently analyze and estimate the failure mode of metal foams under different loadings in engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 November 2023

Minyi Zhu, Guobin Gong, Xuehuiru Ding and Stephen Wilkinson

The study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element…

Abstract

Purpose

The study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element method (DEM) simulations.

Design/methodology/approach

The pre-shearing history is mimicked under drained conditions (triaxial compression) with different pre-shearing strain levels ranging from 0% to 2%. The pre-consolidation history is mimicked by increasing the isotropic compression to different levels ranging from 100 kPa to 300 kPa. The macroscopic and microscopic behaviours are analysed and compared.

Findings

Temporary liquefaction, or quasi-steady state (QSS), is observed in most samples. A higher pre-shearing or pre-consolidation level can provide higher liquefaction resistance. The ultimate state line is found to be unique and independent of the pre-loading histories in stress space. The Lade instability line prematurely predicts the onset of liquefaction for all samples, both with and without pre-loading histories. The redundancy index is an effective microscopic indicator to monitor liquefaction, and the onset of the liquefaction corresponds to the phase transition state where the value of redundancy index is one, which is true for all cases irrespective of the proportions of sliding contacts.

Originality/value

The liquefaction behaviour of granular materials still remains elusive, especially concerning the effects of pre-loading histories on soils. Furthermore, the investigation of the effects of pre-consolidation histories on undrained behaviour and its comparison to pre-sheared samples is rarely reported in the DEM literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 2008

O. Pozo1and and N. Olivi‐Tran

A Molecular Dynamics approach has been used to compute the shear force resulting from the shearing of disks. Two‐dimensional mono‐disperse disks have been put in an horizontal and…

Abstract

A Molecular Dynamics approach has been used to compute the shear force resulting from the shearing of disks. Two‐dimensional mono‐disperse disks have been put in an horizontal and rectangular shearing cell with periodic boundary conditions on right and left hand sides. The shear is applied by pulling the cover of the cell either at a constant rate or by pulling a spring, linked to the cover, with a constant force. Depending on the rate of shearing and on the elasticity of the whole set‐up, we showed that the measured shear force signal is either irregular in time, regular in time but not in shape, or regular in shape.

Details

Multidiscipline Modeling in Materials and Structures, vol. 4 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 July 1943

A.J. Schroeder

FOR many years, a great deal of effort has been directed towards the possibility of reducing the cost of industrial production by means of special arrangements in the workshops…

Abstract

FOR many years, a great deal of effort has been directed towards the possibility of reducing the cost of industrial production by means of special arrangements in the workshops. In this connexion outstanding results have been achieved on the basis of scientific management. Not until much more recently have corresponding efforts been extended to the subject of design, by taking into account trends of thought relating to economical production.

Details

Aircraft Engineering and Aerospace Technology, vol. 15 no. 7
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 March 2014

Maciej Paszkowski and Sylwia Olsztyńska-Janus

The thixotropy of lubricating grease thickened with lithium 12-hydroxystearate with mineral base oil was investigated. The thixotropy has a significant influence on the flow…

1847

Abstract

Purpose

The thixotropy of lubricating grease thickened with lithium 12-hydroxystearate with mineral base oil was investigated. The thixotropy has a significant influence on the flow resistance and pressure drop in the structural components of lubrication systems, which is of major importance as today the latter are being centralized and automated. The paper aims to discuss these issues.

Design/methodology/approach

Rheometer studies on thixotropy were carried out and the grease microstructure was visualized using atomic force microscopy (AFM). Total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the physicochemical interactions which indicate the disintegration and recovery of the grease microstructure.

Findings

A qualitative assessment of the physicochemical interactions between lithium soap floccules was made and a theory of the self-ordering effect of lithium 12-hydroxystearate associated molecules during shearing and their aggregation and flocculation during relaxation has been proposed.

Originality/value

Because of the complexity of the disintegration and recovery of the lubricating grease thickener microstructure, there is still limited physical understanding of the mechanism of this process. Therefore, the present research was undertaken to identify the phenomena involved.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1990

R.C. Averill and J.N. Reddy

A study of the behaviour of shear deformable plate finite elements is carried out to determine why and under what conditions these elements lock, or become overly stiff. A new…

Abstract

A study of the behaviour of shear deformable plate finite elements is carried out to determine why and under what conditions these elements lock, or become overly stiff. A new analytical technique is developed to derive the exact form of the shear constraints which are imposed on an element when its side‐to‐thickness ratio is large. The constraints are expressed in terms of the nodal degrees of freedom, and are interpreted as being either the proper Kirchhoff constraints or spurious locking constraints. To gain a better understanding of locking phenomena, the constraints which arise under full and reduced integration are derived for various plate elements. These include bilinear, biquadratic, eight‐node serendipity and heterosis elements. These analytical findings are compared with numerical results of isotropic and laminated composite plates, verifying the role that shear constraints play in determining the behaviour of thin shear deformable elements. The results of the present study lead to definitive conclusions regarding the origin of locking phenomena and the effect of reduced integration.

Details

Engineering Computations, vol. 7 no. 1
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 13 February 2007

J. Liang, N. Dariavach, P. Callahan and D. Shangguan

To investigate effects of the thermal history on intermetallic thickness and morphology and on the resulting shear strength of the ball attachment for a variety of BGA components.

Abstract

Purpose

To investigate effects of the thermal history on intermetallic thickness and morphology and on the resulting shear strength of the ball attachment for a variety of BGA components.

Design/methodology/approach

In this study, a variety of BGA components with balls made of Pb‐free Sn‐Ag‐Cu (SAC) 305, Sn‐Pb eutectic and high‐temperature 90Pb‐10Sn alloys, were subjected to different thermal histories, including up to ten reflow cycles, and aged at 125°C from 24 to 336 h. The intermetallic thickness and morphology after these thermal events were then examined under optical and scanning electronic microscopes. Ball shearing tests were conducted to investigate effects of the thermal history and intermetallic thickness and morphology on shearing strength of these solder balls.

Findings

The results show that effects directly from intermetallic layers may or may not be detectable; and the shear strength of solder balls is largely dependent on the solder alloy and its microstructure. Shear strength increases are observed after multiple reflow cycles and ageing at elevated temperature for the two Pb‐bearing alloys, while the SAC305 lead‐free alloy shows slight reductions in both strength and ductility after thermal exposure.

Practical implications

Presented results can be used for estimation of reliability for electronic assemblies subjected to multiple rework and repair operations, which expose sensitive components, such as BGAs, to elevated temperatures.

Originality/value

It is believed that a sound understanding of the effects of intermetallic morphology and thickness on reliability of BGA solder balls can lead to more intelligent choice of soldering processes, as well as to rework/repair process optimisation and to establishing their operational limits.

Details

Soldering & Surface Mount Technology, vol. 19 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 March 1996

Ayech Benjeddou and Mohamed Ali Hamdi

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects…

Abstract

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects in isotropic or orthotropic elastic facings, and membrane, bending and transverse shearing effects in an isotropic or othotropic elastic core. Both geometry and local displacements are interpolated by a set of B‐spline functions. The main aspects added by the sandwich structure of the element are the transverse shearing and membrane‐bending coupling effects in the core. These are well represented by a set of new variables which are the mean end relative in‐plane displacements of the facing middle surfaces. Together with the transverse displacement, these variables constitute the degrees of freedom (dofs) of this new B‐spline sandwich element. The finite elements are grouped into super‐elements with C1 continuity to obtain the whole finite element model. For each super‐element a total of five dofs per node is then obtained except for its end nodes where the derivatives of these dofs with respect to the meridional co‐ordinate are added. This choice reduces to a minimum the total number of dofs in comparison to existing sandwich elements. Evaluates the efficiency and accuracy of the proposed element through several benchmark examples. Compares the results with the analytical and numerical solutions found in the literature. A very satisfactory behaviour of the element was observed in all test cases.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 June 2017

Man He, Bo Wang, Weisheng Xia, Shijie Chen and Jinzhuan Zhu

The purpose of this paper is to study the microstructure and mechanical behaviour of smaller microbumps for high density solder interconnects.

Abstract

Purpose

The purpose of this paper is to study the microstructure and mechanical behaviour of smaller microbumps for high density solder interconnects.

Design/methodology/approach

The microstructure was analyzed by scanning electron microscopy and electron backscatter diffraction tests to determine the Sn grain number of the resultant microbumps. The nanomechanical properties of Sn microbumps were investigated by the nanoindentation and shearing tests to understand the failure mechanism and assess the reliability of ultra-high density solder interconnects with numbered grains.

Findings

Only one Sn grain is observed in the interconnect matrix when the microbumps are miniaturized to 40 μm or less. Because of the body-centred tetragonal lattice of ß-Sn unit cell, the mechanical properties of the one-grain Sn microbumps are remarkably anisotropic, which are proved by the difference of the elastic modulus and the stiffness in the different orientations. The shearing tests show that the one-grain Sn microbump has a typical brittle sliding fracture of monocrystal at different shearing speeds.

Practical implications

The paper provides a comparable study for the performance of the bigger solder joints and also makes preliminary research on the microstructure and mechanical behaviour of Sn microbumps with the diameter of 40 μm.

Originality/value

The findings in this paper provide methods of microstructure study by combination of EBSD test and metallographic analysis, mechanical study by combination of nanoindentation test and shearing test, which can provide good guidelines for other smaller microbumps. The strain rate sensitivity exponent of the one-grain Sn microbumps is consistent with the Pb-free bulk solder. This implies that the one-grain Sn microbump has a comparable flow stress to Sn37Pb solder, which is beneficial for Pb-free replacement in higher density microelectronic packaging.

Details

Soldering & Surface Mount Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 February 2006

Dragan D. Milasinovic

The paper deals with the rheological‐dynamical analogy in which the three‐dimensional stress‐strain relations are defined under cyclic variation of stress for Hencky’s total…

Abstract

The paper deals with the rheological‐dynamical analogy in which the three‐dimensional stress‐strain relations are defined under cyclic variation of stress for Hencky’s total strain theory. In many practical visco‐elasto‐plastic problems, like as multiaxial fatigue under loading at constant stress amplitude and constant stress ratio, the load‐carrying members are subjected to proportional loading. The classical Hencky’s theory has the advantage of mathematical convenience but its disadvantage is that the deformations predicted for the volume element are independent of the loading path. The existing formulations of the constitutive models for metals are mainly based on the Prandtl‐Reuss incremental theory of elasto‐plasticity, slip theory of plasticity or continuum damage mechanics. They have been shown capable of reproducing satisfactorily most experimental results available for metallic specimens. However, from the theoretical viewpoint little has been said about how these formulations relate to realistic predicting many different inelastic and time dependent problems of two‐ or threedimensional solids, such as fatigue, discontinuous plastic deformation etc. In this paper, fundamentally new aspect of isochronous constitutive relations for Hencky’s theory, which are dependent of the each loading path, is achieved by systematically introducing RDA concept into the continuum framework. Specific inelastic and fatigue formulation of triaxial state of stress is developed and discussed within the new theoretical tool and related to von Mises plasticity..

Details

Multidiscipline Modeling in Materials and Structures, vol. 2 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 18000