Search results

1 – 10 of over 2000
Article
Publication date: 16 June 2020

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was…

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 19 September 2022

Jinliang Liu and Xincheng Su

The effects of failure mode and strain conditions of CFRP, concrete and stirrups on the shear capacity of reinforced beams bonded by geopolymer and epoxy are studied. In addition…

Abstract

Purpose

The effects of failure mode and strain conditions of CFRP, concrete and stirrups on the shear capacity of reinforced beams bonded by geopolymer and epoxy are studied. In addition, a prediction model of the ultimate bearing capacity of CFRP-shear-strengthened beams is proposed, which considers adhesive performance parameters adhesive performance parameter ßE and FRP width parameter ßw.

Design/methodology/approach

This paper presents an experimental study on ultimate bearing capacity of CFRP-shear-strengthened pre-cracked beams with geopolymer and epoxy resin, which considers parameters such as impregnated adhesives types and CFRP-strengthened scheme.

Findings

The failure modes of CFRP-strengthened beams bonded by geopolymer are the combination of the CFRP-concrete interface substrate failure and fracture failure of CFRP, and that of epoxy is the local substrate failures with small area. The ultimate load of CFRP-strengthened beams is directly affected by the failure modes. The ultimate bearing capacity of CFRP-strengthened beams with geopolymer is 91.4% of that of epoxy resin. Compared with ultimate bearing capacity of CFRP-strengthened beams with U-shaped, that of complete-wrapping increases by 2.5%. Moreover, the stirrup peak strain is reduced by more than 30% in CFRP-strengthened beams bonded with geopolymer and epoxy resin in comparison with the unstrengthened beam. The existing prediction model cannot accurately predict the CFRP shear capacity contribution of strengthened beams with different CFRP-strengthened schemes and adhesive properties. The estimated results are much lower than the test data, and the deviation is much larger than 20%.

Originality/value

Geopolymer alternative to epoxy as an adhesive is feasible and effective for CFRP reinforcement. Furthermore, the accuracy is improved by introducing parameters about adhesive properties based on the existing prediction model. The estimated results are in excellent agreement with the test data, and the deviation is controlled within −12.80%, and the model is suitable for predicting the shear capacity of FRP-strengthened beams with ßf = 90° in shear capacity database.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 February 1994

J.S. Hwang, Z. Guo and G. Lucey

Conventional solder materials are generally low temperature and low strength materials which are particularly vulnerable to temperature and stress. Even under ambient temperature…

Abstract

Conventional solder materials are generally low temperature and low strength materials which are particularly vulnerable to temperature and stress. Even under ambient temperature, 298±5°K, the homologous temperature of most soft solder compositions exceeds 0.5. It is therefore anticipated that the properties and behaviour of such solder compositions could alter significantly when they are exposed to temperature change, temperature rise and/or a moderate level of stresses. With the continued innovation and development of microelectronic packages along with the intense global competition, the reliability of solder joints and the quality and yield of making solder joints in production become increasingly important. This research is to address the fundamental material deficiencies of conventional solders in an effort to develop superior solder materials. Several material principles have been considered including both intrinsic material and soldering process approaches. This paper presents the preliminary results of strengthening effects from the intrinsic material approach. The soldering process effects will be presented in a separate paper. The strengthening effects were evaluated by the combined consideration of monotonic shearing, creep and isothermal low cycle fatigue tests. Fatigue fractography and microstructure of the strengthened solder were characterised in comparison with conventional 63Sn/37Pb solder. The results showed that the proprietary solder system possesses a higher monotonic flow resistance as cyclic frequency decreases to 10−4 Hz. Deformation mechanisms and fatigue failure modes are also discussed in this paper.

Details

Soldering & Surface Mount Technology, vol. 6 no. 2
Type: Research Article
ISSN: 0954-0911

Article
Publication date: 12 June 2017

Danie Roy Anasco Bastin, Umesh Kumar Sharma and Pradeep Bhargava

The main aim of this research was to investigate the effectiveness of various strengthening techniques in restoring the structural performance of reinforced concrete (RC) beams…

Abstract

Purpose

The main aim of this research was to investigate the effectiveness of various strengthening techniques in restoring the structural performance of reinforced concrete (RC) beams damaged by elevated temperatures.

Design/methodology/approach

Three different strengthening techniques, namely, high-strength fibre reinforced concrete (HSFRC), ferrocement (FC) jacketing and externally bonded fibre-reinforced polymer (FRP) were used. Series of RC beams were casted, heated, strengthened and tested to investigate the influence of various variables. The variables of the study were type of strengthening and level of heat damage.

Findings

Externally bonded FRP was found to be the best among the various techniques, especially with respect to strength and stiffness restoration. On the contrary, the FRP strengthening was not that effective in restoring the energy absorption capacity of beams compared to HSFRC and FC techniques of strengthening. The chosen strengthening techniques were able to restore the failure mode of beams to flexural failure, which was found to have changed to shear failure in case of heated unstrenghthened beams.

Originality/value

This research program has contributed to the fundamental understanding of designing post fire retrofit solutions for RC beams.

Details

Journal of Structural Fire Engineering, vol. 8 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 April 2023

Jinliang Liu and Xincheng Su

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain…

Abstract

Purpose

The effects of carbon fiber reinforced polymer (CFRP) reinforcement form, adhesive type and pre-crack width on failure mode, shear capacity, deflection response, CFRP strain response and crack patterns of strengthened specimens were investigated.

Design/methodology/approach

This paper presents a geopolymer adhesive that matches the performance requirements of CFRP adhesive, which is applied to pre-cracked beams reinforced with CFRP strips.

Findings

For specimens with varying structural properties, two failure modes, the CFRP-concrete interface substrate failure and the fracture failure of CFRP, are observed. Moreover, the shear capacity, ultimate deflection and bending stiffness of the U-shaped CFRP-strengthened beams are enhanced in comparison to the complete-wrapping CFRP-strengthened beams. With an increase in pre-crack width, the increase in shear capacity of RC beams shear-strengthened with CFRP strips is less than that of non-cracked beams, resulting in a limited influence on the stiffness of CFRP-strengthened beams. The comparison of experimental results showed that the proposed finite element model (FEM) effectively evaluated the mechanical characteristics of CFRP-strengthened RC beams.

Originality/value

Taking into consideration the reinforcement effect and the concept of environmental protection, the geopolymer adhesive reinforcement scheme is preferable to applying epoxy resin to the CFRP-strengthened RC beams.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 April 2024

Md. Ikramul Hoque, Muzamir Hasan and Shuvo Dip Datta

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which…

Abstract

Purpose

The stone dust column was used to strengthen the sample and had a significant effect on improving the shear strength of the kaolin clay. The application of stone columns, which can improve the overall carrying capacity of soft clay as well as lessen the settlement of buildings built on it, is among the most widespread ground improvement techniques throughout the globe. The performance of foundation beds is enhanced by their stiffness values and higher strength, which could withstand more of the load applied. Stone dust is a wonderful source containing micronutrients for soil, particularly those derived from basalt, volcanic rock, granite and other related rocks. The aim of this paper is to evaluate the properties of soft clay reinforced with encapsulated stone dust columns to remediate problematic soil and obtain a more affordable and environmentally friendly way than using other materials.

Design/methodology/approach

In this study, the treated kaolin sample's shear strength was measured using the unconfined compression test (UCT). 28 batches of soil samples total, 12 batches of single stone dust columns measuring 10 mm in diameter and 12 batches of single stone dust columns measuring 16 mm in diameter. Four batches of control samples are also included. At heights of 60 mm, 80 mm and 100 mm, respectively, various stone dust column diameters were assessed. The real soil sample has a diameter of 50 mm and a height of 100 mm.

Findings

Test results show when kaolin is implanted with a single encased stone dust column that has an area replacement ratio of 10.24% and penetration ratios of 0.6, 0.8 and 1.0, the shear strength increase is 51.75%, 74.5% and 49.20%. The equivalent shear strength increases are 48.50%, 68.50% and 43.50% for soft soil treated with a 12.00% area replacement ratio and 0.6, 0.8 and 1.0 penetration ratios.

Originality/value

This study shows a comparison of how sample types affect shear strength. Also, this article provides argumentation behind the variation of soil strength obtained from different test types and gives recommendations for appropriate test methods for soft soil.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 April 2019

Mohammad Javad Kazemi, Shahabeddin Hatami, Abdolreza Zare and Ali Parvaneh

This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling.

Abstract

Purpose

This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling.

Design/methodology/approach

The braces which have the same section as those for studs and tracks are connected to the frame by screw connections. By pushover analysis, lateral performance of two frame categories, with different dimensions and bracing arrangements, is examined, and the force-displacement diagram and the ultimate strength of walls are extracted. Probable failure modes during lateral loading including distortional buckling of studs, buckling in braces and failure of connections are simulated in the numerical model, and some strengthening suggestions would be offered to prevent brittle failures and, therefore, to increase the lateral strength of the walls.

Findings

The strengthened walls are examined, and their seismic behavior is compared with the original walls. Finally, a parametric study is carried out to evaluate the effect of factors such as thickness of frame members, frame height and yield tension of members on lateral behavior of the shear walls.

Originality/value

In the present research, lateral strength and failure modes of nine types of cold-formed steel shear walls with different arrangements of K-shaped bracing are examined by non-linear finite element analysis, and a parametric study is carried out to extract the effect of the wall frame characteristics on the lateral behavior. Shear walls are classified into two series.

Details

World Journal of Engineering, vol. 16 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 July 2022

Baocheng Liu, Jinliang Liu, Yanqian Wen, Qinglin Hu, Liang Liu and Shili Zhao

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive…

Abstract

Purpose

In this paper, to obtain shear and bending performance of carbon fiber-reinforced polymer (CFRP)-strengthened beams bonded by geopolymers, the effects of impregnated adhesive types, strengthened scheme, CFRP layer and pre-cracked width are investigated, and the performance of CFRP-strengthened beams is validated by the establishment of Finite Element Models (FEMs).

Design/methodology/approach

In this paper, static loading test and finite element analysis of epoxy-CFRP-strengthened (ECS) and geopolymer-CFRP-strengthened (GCS) were carried out, and the bearing capacity and stiffness were compared, the results show that GCS reinforced concrete (RC) beam is feasible and effective.

Findings

The bearing capacity, crack distribution and development, load–deflection curves of GCS RC beams with different pre-crack widths were investigated. The reinforcement effect of geopolymer achieves the same as epoxy, effectively improving the ultimate bearing capacity of the beam, with a maximum increase rate of 28.9%. The failure mode of CFRP is broken in the yield failure stage of GCS RC beam with reasonable strengthening form, and the utilization rate of CFRP is improved. CFRP-strengthened layers, pre-cracked widths significantly affect the mechanical properties, and deformation properties of the strengthened beams.

Originality/value

Compared with ECS RC beams, the bearing capacity and stiffness of GCS RC beams are similar to or even better, indicating that GCS RC beam is feasible and effective. It is a new method for CFRP-strengthened beams, which not only conforms to the concept of national ecological civilization construction, but also provides an economical, environmentally friendly and excellent performance solution for structural reinforcement.

Details

International Journal of Structural Integrity, vol. 13 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 10 October 2020

Sabiha Barour and Abdesselam Zergua

This paper aims to analyze the performance of reinforced concrete (RC) beams strengthened in shear with carbon fiber-reinforced polymer (CFRP) sheets subjected to four-point…

Abstract

Purpose

This paper aims to analyze the performance of reinforced concrete (RC) beams strengthened in shear with carbon fiber-reinforced polymer (CFRP) sheets subjected to four-point bending.

Design/methodology/approach

ANSYS software is used to build six models. In addition, SOILD65, LINK180, SHELL181 and SOLID185 elements are used, respectively, to model concrete, steel reinforcement, polymer and steel plate support. A comparative study between the nonlinear finite element and analytical models, including the ACI 440.2 R-08 and FIB14 models as well as experimental data, is also carried out.

Findings

The comparative study of the nonlinear finite element results with analytical models shows that the difference between the predicted load capacity ranges from 4.44%–24.49% in the case of the ACI 440.2 R-08 model, while the difference for FIB14 code ranges from 2.69%–26.03%. It is clear that there is a good agreement between the nonlinear finite element analysis (NLFEA) results and the different expected CFRP codes.

Practical implications

This model can be used to explore the behavior and predict the RC beams strengthened in shear with different CFRP properties. They could be used as a numerical platform in contrast to expensive and time-consuming experimental tests.

Originality/value

On the basis of the results, a good match is found between the model results and the experimental data at all stages of loading the tested samples. Load capacities as well as load deflection curves are also presented. It is concluded that the differences between the loads at failure ranged from 0.09%–6.16% and 0.56%–4.98%, comparing with experimental study. In addition, the increase in compressive strength produces an increase in the ultimate load capacity of the beam. The difference in the ultimate load capacity was less than 30% when compared with the American Concrete Institute and FIB14 codes.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 October 2001

R.V. Balendran, T.M. Rana and A. Nadeem

Presents an overview and discusses the applications of fibre reinforced polymer (FRP) sheets and plates in the strengthening of concrete structures. An insight may be obtained…

1887

Abstract

Presents an overview and discusses the applications of fibre reinforced polymer (FRP) sheets and plates in the strengthening of concrete structures. An insight may be obtained from the discussions made to enhance the use of these techniques for productive use. In addition, selected case studies have been furnished where FRP materials have been used for repairing/retrofitting, emphasizing the application of different types of FRP materials in strengthening concrete structures. Concludes that the use of FRP material is rapidly gaining pace and replacing the traditional steel or metal based materials due to its enhanced properties and cost effectiveness.

Details

Structural Survey, vol. 19 no. 4
Type: Research Article
ISSN: 0263-080X

Keywords

1 – 10 of over 2000