Search results

1 – 10 of over 3000
Article
Publication date: 19 December 2017

Nour El-houda Daoudi, El-haddi Harkati, Djamel Boutagouga and Messaoud Louafi

The purpose of this paper is to study the effect of the relative density and geometric parameters on the homogenised in-plane elasticity modulus of a cellular honeycomb structure…

Abstract

Purpose

The purpose of this paper is to study the effect of the relative density and geometric parameters on the homogenised in-plane elasticity modulus of a cellular honeycomb structure using analytical and numerical approaches.

Design/methodology/approach

In this work, the mechanical behaviour of a new design of the honeycomb is analysed through a refined analytical model that is developed based on the energy theorems by considering the shearing and stretching effects in addition to bending.

Findings

By taking into account the various deformation mechanisms (MNT), the obtained results show that the values of elasticity modulus are the same for low relative densities, but the difference becomes remarkable for higher densities. Moreover, it is difficult to judge the effect of the relative density and anisotropy of the cellular structure on the values of the homogenised elasticity modulus without considering all the three deformation mechanisms in the analytical model. It is shown that conventional models overestimate the elasticity modulus, especially for high relative densities.

Originality/value

In this paper, a refined model that takes into account the three deformation mechanisms (MNT) is developed to predict the in-plane elasticity modulus of a honeycomb cellular material. It is shown that analytical models that describe the anisotropic behaviour of honeycomb cells can be improved by considering the three deformation mechanisms, which are bending, stretching, and shearing deformations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 April 2018

Rakesh Potluri

The purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the…

Abstract

Purpose

The purpose of this paper is to study the effect of the addition of silicon carbide (SiC) microparticles and their contributions regarding the tensile and shear properties of the T800 fiber reinforced polymer composite at various fiber volume fractions. The tensile and shear properties of the hybrid composites where continuous T800 fibers are used as reinforcements in an epoxy matrix embedded with SiC microparticles have been studied.

Design/methodology/approach

The results were obtained by implementing a micromechanics approach assuming a uniform distribution of reinforcements and considering one unit cell from the whole array. Using the two-step homogenization process, the properties of the materials were determined by using the finite element analysis (FEA). The predicted elastic properties from FEA were compared with the analytical results. The analytical models were implemented in the MATLAB Software. The FEA was performed in ANSYS APDL.

Findings

The mechanical properties of the hybrid composite had increased when compared with the properties of the conventional FRP. The results suggest that SiC particles are a good reinforcement for enhancing the transverse and shear properties of the considered fiber reinforced epoxy composite. The microparticle embedment has significant effect on the transverse tensile properties as well as in-plane and out-of-plane shear properties.

Research limitations/implications

This is significant because improving the properties of the composite materials using different methods is of high interest in the materials community. Using this study people can work on the process of including different type of microparticles in to their composite designs and improve their performance characteristics. The major influence of the particles can be seen only at lower volume fractions of the fiber in the composite. Only FEA and analytical methods were used for the study.

Practical implications

Material property improvements lead to more advanced designs for aerospace and defense structures, which allow for high performance under unpredictable conditions.

Originality/value

This type of study proves that the embedment of different microparticles is a method that can be used for improving the properties of the composite materials. The improvement of the transverse and shear properties will be useful especially in the design of shell structures in the different engineering applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 October 1958

S. Kelsey, R.A. Gellatly and B.W. Clark

Simple expressions for upper and lower limits to the shear modulus of honeycomb sandwich cores are obtained by application of the Unit Displacement and Unit Load methods in…

1644

Abstract

Simple expressions for upper and lower limits to the shear modulus of honeycomb sandwich cores are obtained by application of the Unit Displacement and Unit Load methods in conjunction with simplifying assumptions as to the strain and stress systems respectively in the core. The theory is given for cores built up from foil ribbons to form cells of general honeycomb form. Test methods for the experimental determination of the shear modulus are also discussed. Of these, the three‐point bending test on sandwich beams is considered most satisfactory and results of such tests on steel and aluminium foil honeycombs show good agreement with the theory.

Details

Aircraft Engineering and Aerospace Technology, vol. 30 no. 10
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 21 June 2022

Pengcheng Cao, Xi Chen, Hongjing Dong and Ying Dai

The purpose of this paper is to obtain a theoretical model to analyze the effective modulus of cement paste in early age, including the setting and hardening periods, which has a…

Abstract

Purpose

The purpose of this paper is to obtain a theoretical model to analyze the effective modulus of cement paste in early age, including the setting and hardening periods, which has a great impact on mechanical properties of concrete structure.

Design/methodology/approach

Based on a power law approximation, a generalized mixture rule is used to construct the relationship between the effective modulus and hydration degree. In addition, a new model of the dependence of the Poisson's ratio on the hydration degree and water cement ratio is proposed for cement paste in early age.

Findings

The effective Young's modulus, storage shear modulus and Poisson's ratio of cement pastes with different water cement ratios and hydration degrees are studied by the presented model. The model can be applied to simulate the behavior of early-age cement paste at both the setting and the hardening periods. Compared with the experimental results, the correctness of the model is validated.

Originality/value

This work presents a mathematical model that can effectively estimate the effective Young's modulus and Poisson's ratio in the hardening period, and the storage shear modulus in the setting period of cement pastes.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 November 2021

Guangyuan Wu, Haitao Zhang, Junfeng Sun and Tengjiang Yu

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation…

Abstract

Purpose

In order to evaluate the rheological properties of asphalt more comprehensively and effectively, and to explore and discuss the practicability of relevant models in the evaluation of the rheological properties of asphalt.

Design/methodology/approach

Based on the rheological and viscoelastic theories, temperature scanning, frequency scanning and multiple stress creep recovery (MSCR) tests of different modified asphalt were carried out by dynamic shear rheometer (DSR) to obtain relevant viscoelastic parameters and evaluate the high temperature properties of different modified asphalt. Based on the time-temperature equivalence principle, the main curve was constructed to study the viscoelastic properties of asphalt in a wider frequency domain. The main curve was fitted with the CAM model, and the rheological properties of different modified asphalt were evaluated through the analysis of model parameters. The creep stiffness and creep velocity of different modified asphalt were obtained through the rheological test of bending beam (BBR), and the low-temperature performance of different modified asphalt was analyzed by using Burgers model to fit the creep compliance.

Findings

The results show that the high temperature rheological properties of several modified asphalt studied in the test are ranked from best to worst as follows: PE modified asphalt > SBS modified asphalt > SBR modified asphalt. Short-term aging can improve the high temperature performance of asphalt, and different types of modifiers can promote or inhibit this improvement effect. Based on BBR test and Burgers model fitting analysis, SBR modified asphalt has the best low temperature performance, followed by SBS modified asphalt, while PE modified asphalt has poor low temperature performance, so it is not suitable to be used as road material in low temperature area.

Originality/value

Combined with effective evaluation methods, the rheological properties of asphalt at different temperatures and angles were systematically evaluated, and the evolution of rheological properties of asphalt characterized by model parameters was further analyzed by advanced model simulation.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 11 February 2020

Rafid Hussein, Sudharshan Anandan, Myranda Spratt, Joseph W. Newkirk, K. Chandrashekhara, Misak Heath and Michael Walker

Honeycomb cellular structures exhibit unique mechanical properties such as high specific strength, high specific stiffness, high energy absorption and good thermal and acoustic…

Abstract

Purpose

Honeycomb cellular structures exhibit unique mechanical properties such as high specific strength, high specific stiffness, high energy absorption and good thermal and acoustic performance. This paper aims to use numerical modeling to investigate the effective elastic moduli, in-plane and out-of-plane, for thick-walled honeycombs manufactured using selective laser melting (SLM).

Design/methodology/approach

Theoretical predictions were performed using homogenization on a sample scale domain equivalent to the as-manufactured dimensions. A Renishaw AM 250 machine was used to manufacture hexagonal honeycomb samples with wall thicknesses of 0.2 to 0.5 mm and a cell size of 3.97 mm using 304 L steel powder. The SLM-manufactured honeycombs and cylindrical test coupons were tested using flatwise and edgewise compression. Three-dimensional finite element and strain energy homogenization were conducted to determine the effective elastic properties, which were validated by the current experimental outcomes and compared to analytical models from the literature.

Findings

Good agreement was found between the results of the effective Young’s moduli ratios numerical modeling and experimental observations. In-plane effective elastic moduli were found to be more sensitive to geometrical irregularity compared to out-of-plane effective moduli, which was confirmed by the analytical models. Also, it was concluded that thick-walled SLM manufactured honeycombs have bending-dominated in-plane compressive behavior and a stretch-dominated out-of-plane compressive behavior, which matched well with the simulation and numerical models predictions.

Originality/value

This work uses three-dimensional finite element and strain energy homogenization to evaluate the effective moduli of SLM manufactured honeycombs.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 May 2012

J.R. Correia, M. Garrido, J.A. Gonilha, F.A. Branco and L.G. Reis

The purpose of this paper is to present experimental investigations on the structural behaviour of composite sandwich panels for civil engineering applications. The performance of…

1200

Abstract

Purpose

The purpose of this paper is to present experimental investigations on the structural behaviour of composite sandwich panels for civil engineering applications. The performance of two different core materials – rigid plastic polyurethane (PU) foam and polypropylene (PP) honeycomb – combined with glass fibre reinforced polymer (GFRP) skins, and the effect of using GFRP ribs along the longitudinal edges of the panels were investigated.

Design/methodology/approach

The experimental campaign first included flatwise tensile tests on the GFRP skins; edgewise and flatwise compressive tests; flatwise tensile tests on small‐scale sandwich specimens; and shear tests on the core materials. Subsequently, flexural static and dynamic tests were carried out in full‐scale sandwich panels (2.50×0.50×0.10 m3) in order to evaluate their service and failure behaviour. Linear elastic analytical and numerical models of the tested sandwich panels were developed in order to confirm the effects of varying the core material and of introducing GFRP ribs.

Findings

Tests confirmed the considerable influence of the core, namely of its stiffness and strength, on the performance of the unstrengthened panels; in addition, tests showed that the introduction of lateral reinforcements significantly increases the stiffness and strength of the panels, with the shear behaviour of strengthened panels being governed by the ribs. The unstrengthened panels collapsed due to core shear failure, while the strengthened panels failed due to face skin delamination followed by crushing of the skins. The models, validated with the experimental results, allowed simulating the serviceability behaviour of the sandwich panels with a good accuracy.

Originality/value

The present study confirmed that composite sandwich panels made of GFRP skins and PU rigid foam or PP honeycomb cores have significant potential for a wide range of structural applications, presenting significant stiffness and strength, particularly when strengthened with lateral GFRP ribs.

Article
Publication date: 8 June 2015

Dinesh Kumar, Veena Verma, Keya Dharamvir and H S Bhatti

– The purpose of this paper is to study elastic properties of III-V nitride nanotubes (NNTs) using second generation (REBO) potential.

Abstract

Purpose

The purpose of this paper is to study elastic properties of III-V nitride nanotubes (NNTs) using second generation (REBO) potential.

Design/methodology/approach

In the present research paper elastic properties of BN, AlN and GaN nanotubes have been investigated, using the second generation REBO potential by Brenner and co-workers, which is a bond order potential earlier used for carbon nanostructures successfully. In the present calculation, the same form of potential is used with adjusted parameters for h-BN, h-AlN and h-GaN. In all these cases the authors have considered graphite like network and strongly polar nature of these atoms so electrostatic forces are expected to play an important role in determining elastic properties of these nanotubes. The authors generate the coordinates of nanotubes of different chirality’s and size. Each and every structure thus generated is allowed to relax till the authors obtain minima of energy. The authors then apply the requisite compressions, elongations and twists to the structures and compute the elastic moduli. Young’s Modulus, Shear Modulus and Poisson’s ratio for single-walled armchair and zigzag tubes of different chirality’s and size have been calculated. The computational results show the variation of Young’s Modulus, Poisson’s ratio and Shear Modulus for these NNTs with nanotube diameter. The results have been compared with available data, experimental as well as theoretical.

Findings

The authors have calculated bond length, cohesive energy/bond, Strain energy, Young’s Modulus, Shear Modulus and Poisson’s ratio.

Originality/value

To the best of the knowledge this work is the first attempt to study elastic properties of III-V NNTs using second generation REBO potential

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 February 2019

Mohammed S. Gumaan, Rizk Mostafa Shalaby, Mustafa Kamal Mohammed Yousef, Esmail A.M. Ali and E. E. Abdel-Hady

This study aims to investigate the structural, mechanical, thermal and electrical properties of tin–silver–nickel (Sn-Ag-Ni) melt-spun solder alloys. So, it aims to improve the…

Abstract

Purpose

This study aims to investigate the structural, mechanical, thermal and electrical properties of tin–silver–nickel (Sn-Ag-Ni) melt-spun solder alloys. So, it aims to improve the mechanical properties of the eutectic tin–silver (Sn-Ag) such as tensile strength, plasticity and creep resistance by adding different concentrations of Ni content.

Design/methodology/approach

Ternary melt-spun Sn-Ag-Ni alloys were investigated using x-ray diffractions, scanning electron microscope, dynamic resonance technique (DRT), Instron machine, Vickers hardness tester and differential scanning calorimetry.

Findings

The results revealed that the Ni additions 0.1, 0.3, 0.5, 0.7, 1, 3 and 5 Wt.% to the eutectic Sn-Ag melt-spun solder were added. The “0.3wt.%” of Ni was significantly improved its mechanical properties to efficiently serve under high strain rate applications. Moreover, the uniform distribution of Ag3Sn intermetallic compound with “0.3wt.%” of Ni offered the potential benefits, such as high strength, good plasticity consequently and good mechanical performance through a lack of dislocations and microvoids. The tensile results showed improvement in 17.63 per cent tensile strength (26 MPa), 21 per cent toughness (1001 J/m3), 22.83 per cent critical shear stress (25.074 MPa) and 11 per cent thermal diffusivity (2.065 × 10−7 m2/s) when compared with the tensile strength (21.416 MPa), toughness (790 J/m3), critical shear stress (19.348 MPa) and thermal diffusivity (1.487 × 10−7 m2/s) of the eutectic Sn-Ag. Slight increments have been shown for the melting temperature of Sn96.2-Ag3.5-Ni0.3 (222.62°C) and electrical resistivity to (1.612 × 10−7 Ω.m). It can be said that the eutectic Sn-Ag solder alloy has been mechanically improved with “0.3wt.%” of Ni to become a suitable alloy for high strain rate applications. The dislocation movement deformation mechanism (n = 4.5) without Ni additions changed to grain boundary sliding deformation mechanism (n = 3.5) with Ni additions. On the other hand, the elastic modulus, creep rate and strain rate sensitivity with “0.3wt.%” of Ni have been decreased. The optimum Ni-doped concentration is “0.7wt.%” of Ni in terms of refined microstructure, electrical resistivity, Young’s Modulus, bulk modulus, shear modulus, thermal diffusivity, maximum shear stress, tensile strength and average creep rate.

Originality/value

This study provides nickel effects on the structural of the eutectic Sn-Ag rapidly solidified by melt-spinning technique. In this paper, the authors have compared the elastic modulus of the melt-spun compositions which has been resulted from the tensile strength tester with these results from the DRT for the first time to best of the authors’ knowledge. This paper presents new improvements in mechanical and electrical performance.

Details

Soldering & Surface Mount Technology, vol. 31 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 July 1995

Y.N. Ziraba, M.H. Baluch, A.M. Sharif, G.J. Al—Sulaimani, A.K. Azad and I.A. Basunbul

This paper presents a finite element model for analysis of damaged RCbeams strengthened or repaired by externally bonding glass fibre reinforcedplastics (GFRP) on the tension side…

Abstract

This paper presents a finite element model for analysis of damaged RC beams strengthened or repaired by externally bonding glass fibre reinforced plastics (GFRP) on the tension side of the beams. The salient features include: (i) the introduction of a thin, six—noded element to simulate behaviour of the concrete/epoxy glue/GFRP interface and )ii( a scheme of loading a virgin RC beam to a prescribed displacement to simulate damage, unloading and then reloading the damaged RC beam fortified by an externally bonded GFRP plate. Results are presented for RC beams repaired by plates of varying thickness and a transmutation of failure mode is noted from classical flexure for the case of external reinforcement in the form of thin GFRP plates to a unique concrete cover rip off failure for thicker GFRP plates and not predicted by the ACI shear strength formula for diagonal tension failure of unplated RC beams of similar geometry.

Details

Engineering Computations, vol. 12 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 3000