Search results

1 – 10 of 188
Article
Publication date: 1 May 2002

Subrata Mondal, Jinlian Hu, Zhuohong Yang, Yan Liu and Yau-shan Szeto

Thermal-responsive shape-memory polyurethane consists of two phases, a thermally reversible phase for maintaining a transient shape and fixed phase structure for recovering the…

Abstract

Thermal-responsive shape-memory polyurethane consists of two phases, a thermally reversible phase for maintaining a transient shape and fixed phase structure for recovering the original shape. The use of shape memory polyurethane in clothing is a novel concept. The aim of this paper is to introduce the application of shape memory polyurethane to smart clothing, whose thermal insulation value could be change depending on the change of temperature of the external environment to give comfort regardless of weather change. Thus a review on the shape memory polyurethane is introduced: the mechanism of the shape memory polyurethane is described; the difference between ordinary polyurethane and shape memory polyurethane, the research on shape memory polyurethane and its potential application to smart garment are summarized; the work being carried out in the Hong Kong Polytechnic University are also introduced.

Details

Research Journal of Textile and Apparel, vol. 6 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 January 2018

Changchun Wang, Bo Kou, Zusheng Hang, Xuejuan Zhao, Tianxuan Lu, Ziqi Wu and Jin-Peng Zhang

This study aims to present that the chemo-responsive shape recovery of thermoplastic polyurethane (TPU) is tunable by solvents with different solubility parameters, and it is…

Abstract

Purpose

This study aims to present that the chemo-responsive shape recovery of thermoplastic polyurethane (TPU) is tunable by solvents with different solubility parameters, and it is generic for chemo-responsive shape-memory polymer and its composites.

Design/methodology/approach

Two kinds of commercial TPU samples with different thicknesses were prepared by panel vulcanizer and injection molding (an industrial manner) to investigate their chemo-responsive shape memory properties in acetic ether and acetone.

Findings

Results showed that all of TPU films with different thicknesses can fully recover their original shapes weather they recover in acetic ether or acetone. But the recovery time of TPU films in acetone is greatly reduced, especially for the twisting samples. The residual strains of recovery TPU samples after extension reduce obviously.

Research limitations/implications

The great decrement of recovery time is related to two factors. One is due to the bigger solubility parameter of acetone with higher dipole moment compared with those of acetic ether, and the other is the remained internal stress of TPU films after preparation. The internal stress is identified to have an effect on the shape-memory properties by comparing the recovery process of samples with/without annealing. The reduced residual strains of recovery TPU samples after extension is due to the increasing mobility of polymer segments after molecules of acetic ether penetrates into the polymeric chains.

Originality/value

This is a universal strategy to control the recovery process of shape-memory materials or composites. The underlying mechanism is generic and should be applicable to chemo-responsive shape-memory polymers or their composites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing…

15542

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 27 January 2021

Irina Tatiana Garces and Cagri Ayranci

A review on additive manufacturing (AM) of shape memory polymer composites (SMPCs) is put forward to highlight the progress made up to date, conduct a critical review and show the…

Abstract

Purpose

A review on additive manufacturing (AM) of shape memory polymer composites (SMPCs) is put forward to highlight the progress made up to date, conduct a critical review and show the limitations and possible improvements in the different research areas within the different AM techniques. The purpose of this study is to identify academic and industrial opportunities.

Design/methodology/approach

This paper introduces the reader to three-dimensional (3 D) and four-dimensional printing of shape memory polymers (SMPs). Specifically, this review centres on manufacturing technologies based on material extrusion, photopolymerization, powder-based and lamination manufacturing processes. AM of SMPC was classified according to the nature of the filler material: particle dispersed, i.e. carbon, metallic and ceramic and long fibre reinforced materials, i.e. carbon fibres. This paper makes a distinction for multi-material printing with SMPs, as multi-functionality and exciting applications can be proposed through this method. Manufacturing strategies and technologies for SMPC are addressed in this review and opportunities in the research are highlighted.

Findings

This paper denotes the existing limitations in the current AM technologies and proposes several directions that will contribute to better use and improvements in the production of additive manufactured SMPC. With advances in AM technologies, gradient changes in material properties can open diverse applications of SMPC. Because of multi-material printing, co-manufacturing sensors to 3D printed smart structures can bring this technology a step closer to obtain full control of the shape memory effect and its characteristics. This paper discusses the novel developments in device and functional part design using SMPC, which should be aided with simple first stage design models followed by complex simulations for iterative and optimized design. A change in paradigm for designing complex structures is still to be made from engineers to exploit the full potential of additive manufactured SMPC structures.

Originality/value

Advances in AM have opened the gateway to the potential design and fabrication of functional parts with SMPs and their composites. There have been many publications and reviews conducted in this area; yet, many mainly focus on SMPs and reserve a small section to SMPC. This paper presents a comprehensive review directed solely on the AM of SMPC while highlighting the research opportunities.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 June 2013

H.B. Lu, W.M. Huang and Y.T. Yao

The purpose of this paper is to examine the underlying mechanism and physico‐chemical requirements of chemo‐responsive shape change/memory polymers and to explore the future trend…

1639

Abstract

Purpose

The purpose of this paper is to examine the underlying mechanism and physico‐chemical requirements of chemo‐responsive shape change/memory polymers and to explore the future trend of development and potential applications.

Design/methodology/approach

Working mechanism in chemo‐responsive shape change/memory polymers is firstly identified. And then the physico‐chemical requirements for the representative polymers are characterized.

Findings

The different working mechanisms, fundamentals, physico‐chemical requirements and theoretical origins have been discussed. Current research and development on the fabrication strategies of chemo‐responsive shape change/memory polymers have been summarised. The future trend and potential applications have been explored and estimated.

Research limitations/implications

This review examines physico‐chemical requirements and theoretical origins necessary to achieve chemo‐responsiveness, and then discusses recent developments and future trends.

Practical implications

Shape change/memory polymers can be used in the broad field of bio‐ and/or medicine.

Originality/value

Breakthroughs and rapid development of chemo‐responsive shape change/memory polymers will significantly improve the research and development of smart materials, structures and systems.

Details

Pigment & Resin Technology, vol. 42 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Xin Wang, Xiaoling Xu, Zuowan Zhou and Jihua Gou

This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano…

Abstract

Purpose

This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano or micro-sized particles in enhancing the properties of SMP was investigated. This study also attempts to use a low-cost and effective spraying approach to fabricate the coatings. The coatings are expected to have good conformability with the substrate and deliver multi-functional performance, such as wrinkle free, wear resistance, thermal stability and antimicrobial property.

Design/methodology/approach

High-performance SMP composite coatings or thin films were fabricated by a home-made continuous spray-deposition system. The morphologies of the coatings were studied using the scanning electron microscope and the transmission electron microscope. The abrasion properties were evaluated by Taber Abraser test, and thermo-gravimetric analysis was carried out to investigate the thermal properties of prepared composites. The antimicrobial property was determined by the inhibition zone method using E. coli. The thermally responsive shape memory effect of the resulting composites was also characterized.

Findings

The morphology analysis indicated that the nanoclay was distributed on the surface of the coating which resulted in a significant improvement of the wear property. The wear resistance of the coatings with nanoclay was improved as much as 40 per cent compared with that of the control sample. The thermo-gravimetric analysis revealed that the weight loss rate of composites with nanoclay was dropped over 40 per cent. The SMP coating with zinc oxide (ZnO) showed excellent antimicrobial effect. The shape recovery effect of SMP/nanoclay and SMP/ZnO composites can be triggered by external heating and the composites can reach a full shape recovery within 60 s.

Research limitations/implications

This study proposed a continuous spray-deposition fabrication of SMP composite coatings, which provides a new avenue to prepare novel multi-functional coatings with low cost.

Originality/value

Most studies have emphasized on the sole property of SMP composites. Herein, a novel SMP composite coating which could deliver multi-functionality such as wrinkle free, wear resistance, thermal stability and antimicrobial property was proposed.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 16 January 2020

Yongkun Wang, Yuting Zhang, Jinhua Zhang, Junjue Ye and Wenchao Tian

The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape

Abstract

Purpose

The purpose of this paper is to study the influence of calcium sulfate whiskers (CSWs) on the thermodynamic properties and shape memory properties of epoxy/cyanate ester shape memory composites.

Design/methodology/approach

To improve the mechanical properties of shape memory cyanate ester (CE)/epoxy polymer (EP) resin, high performance CSWs were used to reinforce the thermo-induced shape memory CE/EP composites and the shape memory CSW/CE/EP composites were prepared by molding. The effect of CSW on the mechanical properties and shape memory behavior of shape memory CE/EP composites was investigated.

Findings

After CSW filled the shape memory CE/EP composites, the bending strength of the composites is greatly improved. When the content of CSW is 5 Wt.%, the bending strength of the composite is 107 MPa and the bending strength is increased by 29 per cent compared with bulk CE/EP resin. The glass transition temperature and storage modulus of the composites were improved in CE/EP resin curing system. However, when the content of CSW is more than 10 Wt.%, clusters are easily formed between whiskers and the voids between whiskers and matrix increase, which will lead to the decrease of mechanical properties of composites. The results of shape memory test show that the shape memory recovery time of the composites decreases with the decrease of CSW content at the same temperature. In addition, the shape recovery ratio of the composites decreased slightly with the increase of the number of thermo-induced shape memory cycles.

Research limitations/implications

A simple way for fabricating thermo-activated SMP composites has been developed by using CSW.

Originality/value

The outcome of this study will help to fabricate the SMP composites with high mechanical properties and the shape memory CSW/CE/EP composites are expected to be used in space deployable structures.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 June 2017

J.N. Chakraborty, Priyanka Kumari Dhaka, Akshit Vikram Sethi and Md Arif

Shape memory polymers (SMPs) respond with a change in their shape against a specific stimulus by memorizing their original shape and are reformed after deformation most often by…

Abstract

Purpose

Shape memory polymers (SMPs) respond with a change in their shape against a specific stimulus by memorizing their original shape and are reformed after deformation most often by changing the temperature of the surrounding without additional mechanical efforts. In the coming years, these polymers indeed will be in limelight to manufacture textile materials which will retain their shape even after prolonged use under disturbed conditions. This study aims at defining shape memory materials and polymers as well as their technological characteristics and also highlights application in various fields of textiles.

Design/methodology/approach

The methodology used to explain these SMPs have been carried out starting with the discussion on their properties, their physical nature, types, viz., shape memory alloys (SMAs), shape memory ceramics, shape memory hybrid, magnetic shape memory alloy, shape memory composites, shape memory gels and SMP along with properties of each type. Other related details of these polymers, such as their advantages, structure and mechanism, shape memory functionality, thermally responsive SMPs and applications, have been detailed.

Findings

It has been observed that the SMPs are very important in the fields of wet and melt-spun fibers to offer novel and functional properties, cotton and wool fabric finishing, to produce SMP films, foams and laminated textiles, water vapor permeable and breathable SMP films, etc.

Originality/value

The field of SMPs is new, and very limited information is available to enable their smooth production and handling.

Details

Research Journal of Textile and Apparel, vol. 21 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 2 January 2018

Yongtao Yao, Yuncheng Xu, Bing Wang, Weilong Yin and Haibao Lu

The purpose of this paper is to provide a review of recent systematic and comprehensive advancement in electrospun polymer fiber and their composites with shape memory property.

Abstract

Purpose

The purpose of this paper is to provide a review of recent systematic and comprehensive advancement in electrospun polymer fiber and their composites with shape memory property.

Design/methodology/approach

The nanofiber manufacture technique is initially reviewed. Then, the influence of electrospinning parameters and actuation method has been discussed. Finally, the study concludes with a brief review of recent development in potential applications.

Findings

Shape memory polymer (SMP) nanofibers are a type of smart materials which can change shape under external stimuli (e.g. temperature, electricity, magnetism, solvent). In general, such SMP nanofibers could be easily fabricated by mature electrospinning technique. The nanofiber morphology is mainly affected by the electrospinning parameters, including applied voltage, tip-to-collector distance, viscosity of solution, humidity and molecular weight. For actuation method, most SMP nanofibers and their composites can change their shapes in response to heat, magnetic field or solvent, while few can be driven by electricity. Compared with the block SMPs, electrospun SMP nanofibers’ mat with porosity and low mechanical property have a wide potential application field including tissue engineering, drug delivery, filtration, catalysis.

Originality/value

This paper provides a detailed review of shape memory nanofibers: fabrication, actuation and potential application, in the near future.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 August 2021

Shubham Shankar Mohol and Varun Sharma

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant…

Abstract

Purpose

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant research in the area of materials. This has led to the invention of Smart Materials (SMs). The 4D printing is basically 3D printing of these SMs. This paper aims to focus on novel materials and their useful application in various industries using the technology of 4D printing.

Design/methodology/approach

Research studies in 4D printing have increased since the time when this idea was first introduced in the year 2013. The present research study will deeply focus on the introduction to 4D printing, types of SMs and its application based on the various types of stimulus. The application of each type of SM has been explained along with its functioning with respect to the stimulus.

Findings

SMs have multiple functional applications pertaining to appropriate industries. The 4D printed parts have a distinctive capability to change its shape and self-assembly to carry out a specific function according to the requirement. Afterward, the fabricated part can recover to its 3D printed “memorized” shape once it is triggered by the stimulus.

Originality/value

The present study highlights the various capabilities of SMs, which is used as a raw material in 4D printing.

Graphical abstract

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 188