Search results

11 – 20 of 680
Article
Publication date: 2 January 2018

Changchun Wang, Bo Kou, Zusheng Hang, Xuejuan Zhao, Tianxuan Lu, Ziqi Wu and Jin-Peng Zhang

This study aims to present that the chemo-responsive shape recovery of thermoplastic polyurethane (TPU) is tunable by solvents with different solubility parameters, and it is…

Abstract

Purpose

This study aims to present that the chemo-responsive shape recovery of thermoplastic polyurethane (TPU) is tunable by solvents with different solubility parameters, and it is generic for chemo-responsive shape-memory polymer and its composites.

Design/methodology/approach

Two kinds of commercial TPU samples with different thicknesses were prepared by panel vulcanizer and injection molding (an industrial manner) to investigate their chemo-responsive shape memory properties in acetic ether and acetone.

Findings

Results showed that all of TPU films with different thicknesses can fully recover their original shapes weather they recover in acetic ether or acetone. But the recovery time of TPU films in acetone is greatly reduced, especially for the twisting samples. The residual strains of recovery TPU samples after extension reduce obviously.

Research limitations/implications

The great decrement of recovery time is related to two factors. One is due to the bigger solubility parameter of acetone with higher dipole moment compared with those of acetic ether, and the other is the remained internal stress of TPU films after preparation. The internal stress is identified to have an effect on the shape-memory properties by comparing the recovery process of samples with/without annealing. The reduced residual strains of recovery TPU samples after extension is due to the increasing mobility of polymer segments after molecules of acetic ether penetrates into the polymeric chains.

Originality/value

This is a universal strategy to control the recovery process of shape-memory materials or composites. The underlying mechanism is generic and should be applicable to chemo-responsive shape-memory polymers or their composites.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Hongsheng Luo, Xingdong Zhou, Yuncheng Xu, Huaquan Wang, Yongtao Yao, Guobin Yi and Zhifeng Hao

This paper aims to exploit shape-memory polymers as self-healable materials. The underlying mechanism involved the thermal transitions as well as the enrichment of the healing…

Abstract

Purpose

This paper aims to exploit shape-memory polymers as self-healable materials. The underlying mechanism involved the thermal transitions as well as the enrichment of the healing reagents and the closure of the crack surfaces due to shape recovery. The multi-stimuli-triggered shape memory composite was capable of self-healing under not only direct thermal but also electrical stimulations.

Design/methodology/approach

The shape memory epoxy polymer composites comprising the AgNWs and poly (ε-caprolactone) were fabricated by dry transfer process. The morphologies of the composites were investigated by the optical microscope and scanning electron microscopy (SEM). The electrical conduction and the Joule heating effect were measured. Furthermore, the healing efficiency under the different stimuli was calculated, whose dependence on the compositions was also discussed.

Findings

The AgNWs network maintained most of the pathways for the electrons transportation after the dry transfer process, leading to a superior conduction and flexibility. Consequently, the composites could trigger the healing within several minutes, as applied with relatively low voltages. It was found that the composites having more the AgNWs content had better electrically triggered performance, while 50 per cent poly (ε-caprolactone) content endowed the materials with max healing efficiency under thermal or electrical stimuli.

Research limitations/implications

The findings may greatly benefit the application of the intelligent polymers in the fields of the multifunctional flexible electronics.

Originality/value

Most studies have by far emphasized on the direct thermal triggered cases. Herein, a novel, flexible and conductive shape memory-based composite, which was capable of self-healing under the thermal or electrical stimulations, has been proposed.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 24 January 2023

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching…

Abstract

Purpose

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching, self-assembly and self-tightening. Advancements in today’s technology led to the easy fabrication of such novel materials using 3D printing techniques. When an external stimulus causes a 3D printed specimen to change shape on its own, this process is known as 4D printing. This study aims to investigate the effect of graphene nano platelet (GNPs) on the shape memory behaviour of shape memory photo polymer composites (SMPPCs) and to optimize the shape-changing response by using the Taguchi method.

Design/methodology/approach

SMPPCs are synthesized by blending different weight fractions (Wt.%) of flexible or soft photopolymer (FPP) resin with hard photopolymer (HPP) resin, then reinforced with GNPs at various Wt.% to the blended PP resin, and then fabricated using masked stereolithography (MSLA) apparatus. The shape memory test is conducted to assess the shape recovery time (T), shape fixity ratio (Rf), shape recovery ratio (Rr) and shape recovery rate (Vr) using Taguchi analysis by constructing an L9 orthogonal array with parameters such as Wt.% of a blend of FPP and HPP resin, Wt.% of GNPs and holding time.

Findings

SMPPCs with A3, B3 and C2 result in a faster T with 2 s, whereas SMPPCs with A1, B1 and C3 result in a longer T with 21 s. The factors A and B are ranked as the most significant in the Pareto charts that were obtained, whereas C is not significant. It can be seen from the heatmap plot that when factors A and B increase, T is decreasing and Vr is increasing. The optimum parameters for T and Vr are A3, B3 and C2 at the same time for Rf and Rr are A1, B3 and C1.

Research limitations/implications

Faster shape recovery results from a higher Wt.% of FPP resin in a blend than over a true HPP resin. This is because the flexible polymer links in FPP resin activate more quickly over time. However, a minimum amount of HPP resin also needs to be maintained because it plays a role in producing higher Rf and Vr. The use of GNPs as reinforcement accelerates the T because nanographene conducts heat more quickly, releasing the temporary shape of the specimen more quickly.

Originality/value

The use of FPP and HPP resin blends, fabricating the 4D-printed SMPPCs specimens with MSLA technology, investigating the effect of GNPs and optimizing the process parameters using Taguchi and the work was validated using confirmation tests and regression analysis, which increases the originality and novelty.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 January 2018

Yubing Dong, Chen Qian, Jian Lu and Yaqin Fu

Epoxy (EP) and polye-caprolactone (PCL) are typical dual-shape memory polymer (DSMP). To get excellent triple-shape memory effect (TSME) polymer composites which are made from EP…

Abstract

Purpose

Epoxy (EP) and polye-caprolactone (PCL) are typical dual-shape memory polymer (DSMP). To get excellent triple-shape memory effect (TSME) polymer composites which are made from EP and PCL. Miscible PCL/EP blend composites have been investigated and compared to the TSMEs with electrospun PCL microfiber membranes/EP composites. Clay montmorillonite (MMT)-modified electrospun PCL microfiber membranes were prepared to improve the shape memory fixities of electrospun PCL microfiber membranes/EP composites.

Design/methodology/approach

The morphologies of electrospun PCL microfiber membranes and the cross section of PCL/EP composites were studied using a field emission scanning electron microscope (FE-SEM), and the existence of MMT was confirmed by a transmission electron microscope. Thermal mechanical properties were observed by a differential scanning calorimeter (DSC) and a dynamic thermomechanical analysis machine, and the TSMEs were also determined through dynamic mechanical analysis.

Findings

Results indicate that the TSMEs of electrospun PCL microfiber membranes/EP composites were excellent, whereas the TSMEs of PCL/EP blend composites were poor. The TSMEs of PCL electrospun microfiber membranes/EP composites significantly improved with the addition of the PCL electrospun microfiber modified with moderate MMT.

Research limitations/implications

Adding a moderate content of MMT into the electrospun PCL fibers, could improve the TSME of the PCL fiber membranes/EP composites. This study was to create a simple and effective method that can be applied to improve the performance of other SMP.

Originality/value

A novel triple-shape memory composite were made from dual-shape memory EP and electrospun PCL fiber membranes.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 2 January 2018

Xin Wang, Xiaoling Xu, Zuowan Zhou and Jihua Gou

This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano…

Abstract

Purpose

This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano or micro-sized particles in enhancing the properties of SMP was investigated. This study also attempts to use a low-cost and effective spraying approach to fabricate the coatings. The coatings are expected to have good conformability with the substrate and deliver multi-functional performance, such as wrinkle free, wear resistance, thermal stability and antimicrobial property.

Design/methodology/approach

High-performance SMP composite coatings or thin films were fabricated by a home-made continuous spray-deposition system. The morphologies of the coatings were studied using the scanning electron microscope and the transmission electron microscope. The abrasion properties were evaluated by Taber Abraser test, and thermo-gravimetric analysis was carried out to investigate the thermal properties of prepared composites. The antimicrobial property was determined by the inhibition zone method using E. coli. The thermally responsive shape memory effect of the resulting composites was also characterized.

Findings

The morphology analysis indicated that the nanoclay was distributed on the surface of the coating which resulted in a significant improvement of the wear property. The wear resistance of the coatings with nanoclay was improved as much as 40 per cent compared with that of the control sample. The thermo-gravimetric analysis revealed that the weight loss rate of composites with nanoclay was dropped over 40 per cent. The SMP coating with zinc oxide (ZnO) showed excellent antimicrobial effect. The shape recovery effect of SMP/nanoclay and SMP/ZnO composites can be triggered by external heating and the composites can reach a full shape recovery within 60 s.

Research limitations/implications

This study proposed a continuous spray-deposition fabrication of SMP composite coatings, which provides a new avenue to prepare novel multi-functional coatings with low cost.

Originality/value

Most studies have emphasized on the sole property of SMP composites. Herein, a novel SMP composite coating which could deliver multi-functionality such as wrinkle free, wear resistance, thermal stability and antimicrobial property was proposed.

Details

Pigment & Resin Technology, vol. 47 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 March 2010

Włodzimierz Ochoński

The purpose of this paper is to present short characteristics of shape memory alloys (SMA) and shape memory polymers (SMP) and some examples of application of these materials in…

2688

Abstract

Purpose

The purpose of this paper is to present short characteristics of shape memory alloys (SMA) and shape memory polymers (SMP) and some examples of application of these materials in industrial sealing technology.

Design/methodology/approach

In this paper, short characteristic of shape memory materials and design examples of applying them in industrial sealing technology such as: tube coupling in hydraulic systems, flanged pipe connections, lip radial seal, mechanical face seal, soft gland packing, magnetic fluid seal, and in bearing seal system for drill bit, are given.

Findings

The paper provides information about innovative fluid seal designs based on particular properties of the shape memory materials, applied in stationary joints, and rotary equipments. These new solutions provide often to simplify seal design, their miniaturization, increase of tightness, and reduction of operating costs.

Originality/value

This paper offers some new fluid seal designs based on the shape memory materials and their practical application in industrial sealing technology.

Details

Industrial Lubrication and Tribology, vol. 62 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 23 February 2012

Manzoor Ahmad, J. Luo, Dheraj Singh and Mohsen Miraftab

Fibers and fabrics are often used to reinforce shape memory polymers (SMPs) to improve their mechanical strength and properties, and the composites have been widely used in…

Abstract

Fibers and fabrics are often used to reinforce shape memory polymers (SMPs) to improve their mechanical strength and properties, and the composites have been widely used in engineering. However incorporation of fibers and fabrics in SMPs are often accompanied with the degradation of thermal mechanical properties and shape memory effect. The thermomechanical properties and degradation mechanisms of a shape-memory polymer composite (SMPC) were investigated. Up to 100% extension, the SMPCs showed good shape memory effect with excellent recovery ratio, recovery stress and mechanical properties; while beyond that the recovery ratio and stress of the composites deteriorate rapidly due to the significant delamination and debonding of fibers and fabrics from the SMP resin and accumulation of broken fibers.

Details

World Journal of Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 May 2018

Jorge Villacres, David Nobes and Cagri Ayranci

Material extrusion additive manufacturing, also known as fused deposition modeling, is a manufacturing technique in which objects are built by depositing molten materials…

Abstract

Purpose

Material extrusion additive manufacturing, also known as fused deposition modeling, is a manufacturing technique in which objects are built by depositing molten materials layer-by-layer through a nozzle. The use and application of this technique has risen dramatically over the past decade. This paper aims to first, report on the production and characterization of a shape memory polymer material filament that was manufactured to print shape memory polymer objects using material extrusion additive manufacturing. Additionally, it aims to investigate and outline the effects of major printing parameters, such as print orientation and infill percentage, on the elastic and mechanical properties of printed shape memory polymer samples.

Design/methodology/approach

Infill percentage was tested at three levels, 50, 75 and 100 per cent, while print orientation was tested at four different angles with respect to the longitudinal axis of the specimens at 0°, 30°, 60° and 90°. The properties examined were elastic modulus, ultimate tensile strength and maximum strain.

Findings

Results showed that print angle and infill percentage do have a significant impact on the manufactured test samples.

Originality/value

Findings can significantly influence the tailored design and manufacturing of smart structures using shape memory polymer and material extrusion additive manufacturing.

Article
Publication date: 5 May 2015

Haibao Lu, Yongtao Yao, Shipeng Zhu, Yunhua Yang and Long Lin

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their…

Abstract

Purpose

The purpose of this paper is a study aimed at overcoming the interface issue between nanopaper and polymer matrix in shape-memory polymer (SMP) composite laminates caused by their large dissimilarity in electrical/thermal conductive properties. The study attempted to develop an effective approach to fabricate free-standing carbon nanofibre (CNF) assembly in octagon shape formation. The structure design and thermal conductive performance of the resulting octagon-shaped CNF assembly were optimised and simulated.

Design/methodology/approach

The CNF nanopaper was prepared based on a filtration method. The SMP nanocomposites were fabricated by incorporating these CNF assemblies with epoxy-based SMP resin by a resin-transfer modelling technique. Thermal conductivity of the octagon-shaped CNF assembly was simulated using the ANSYS FLUENT software for structure design and optimisation. The effect of the octagon-shaped CNF on the thermomechanical properties and thermally responsive shape-memory effect of the resulting SMP nanocomposites were characterised and interpreted.

Findings

The CNF template incorporated with SMP to achieve Joule heating triggered shape recovery at a low electric voltage of 3-10 V, due to which the electrical resistivity of SMP nanocomposites was significantly improved and lowered to 0.20 O·cm by the CNF template. It was found that the octagon CNF template with 2 mm width of skeleton presented a highest thermally conductive performance to transfer resistive heat to the SMP matrix.

Research limitations/implications

A simple way for fabricating electro-activated SMP nanocomposites has been developed by using an octagon CNF template. Low electrical voltage actuation in SMP has been achieved.

Originality/value

The fabricated CNF template, the structure design and analysis of dynamic thermomechanical properties of SMP are novel.

Details

Pigment & Resin Technology, vol. 44 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 July 2020

Jorge Villacres, David Nobes and Cagri Ayranci

The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to in this…

Abstract

Purpose

The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to in this paper, material extrusion additive manufacturing (MEAM) is a technique in which polymeric materials are extruded though a nozzle creating parts via accumulation and joining of different layers. These layers are fused together to build three-dimensional objects. Shape memory polymers (SMP) are stimulus responsive materials, which have the ability to recover their pre-programmed form after being exposed to a large strain. To induce its shape memory recovery movement, an external stimulus such as heat needs to be applied.

Design/methodology/approach

This project investigates and characterizes the influence of print orientation and infill percentage on shape recovery properties. The analyzed shape recovery properties are shape recovery force, shape recovery speed and time elapsed before activation. To determine whether the analyzed factors produce a significant variation on shape recovery properties, t-tests were performed with a 95% confidence factor between each analyzed level.

Findings

Results proved that print angle and infill percentage do have a significant impact on recovery properties of the manufactured specimens.

Originality/value

The manufacturing of SMP objects through a MEAM process has a vast potential for different applications; however, the shape recovery properties of these objects need to be analyzed before any practical use can be developed. These have not been studied as a function of print parameters, which is the focus of this study.

11 – 20 of 680