Search results

1 – 10 of over 1000
Article
Publication date: 24 January 2023

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching…

Abstract

Purpose

Shape memory materials are functional materials having a good number of applications due to their unique features of programmable material technology such as self-stretching, self-assembly and self-tightening. Advancements in today’s technology led to the easy fabrication of such novel materials using 3D printing techniques. When an external stimulus causes a 3D printed specimen to change shape on its own, this process is known as 4D printing. This study aims to investigate the effect of graphene nano platelet (GNPs) on the shape memory behaviour of shape memory photo polymer composites (SMPPCs) and to optimize the shape-changing response by using the Taguchi method.

Design/methodology/approach

SMPPCs are synthesized by blending different weight fractions (Wt.%) of flexible or soft photopolymer (FPP) resin with hard photopolymer (HPP) resin, then reinforced with GNPs at various Wt.% to the blended PP resin, and then fabricated using masked stereolithography (MSLA) apparatus. The shape memory test is conducted to assess the shape recovery time (T), shape fixity ratio (Rf), shape recovery ratio (Rr) and shape recovery rate (Vr) using Taguchi analysis by constructing an L9 orthogonal array with parameters such as Wt.% of a blend of FPP and HPP resin, Wt.% of GNPs and holding time.

Findings

SMPPCs with A3, B3 and C2 result in a faster T with 2 s, whereas SMPPCs with A1, B1 and C3 result in a longer T with 21 s. The factors A and B are ranked as the most significant in the Pareto charts that were obtained, whereas C is not significant. It can be seen from the heatmap plot that when factors A and B increase, T is decreasing and Vr is increasing. The optimum parameters for T and Vr are A3, B3 and C2 at the same time for Rf and Rr are A1, B3 and C1.

Research limitations/implications

Faster shape recovery results from a higher Wt.% of FPP resin in a blend than over a true HPP resin. This is because the flexible polymer links in FPP resin activate more quickly over time. However, a minimum amount of HPP resin also needs to be maintained because it plays a role in producing higher Rf and Vr. The use of GNPs as reinforcement accelerates the T because nanographene conducts heat more quickly, releasing the temporary shape of the specimen more quickly.

Originality/value

The use of FPP and HPP resin blends, fabricating the 4D-printed SMPPCs specimens with MSLA technology, investigating the effect of GNPs and optimizing the process parameters using Taguchi and the work was validated using confirmation tests and regression analysis, which increases the originality and novelty.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 July 2022

Sai Vamsi Krishna Tataverthi and Srinivasa Rao Devisetty

The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy.

Abstract

Purpose

The purpose of this study is to assess the influence of Al and Ag addition on thermal, mechanical and shape memory properties of Cu-Al-Ag alloy.

Design/methodology/approach

The material is synthesized in a controlled atmosphere to minimize the reaction of alloying elements with the atmosphere. Cast samples were homogenized, then subjected to hot rolling and further betatized, followed by step quenching. Eight samples were chosen for study among which first four samples varied in Al content, and the next set of four samples varied in Ag composition.

Findings

The testing yielded a result that the increase in binary alloying element decreased transformation temperature range but increased entropy and elastic energy values. It also improved the shape memory effect and mechanical properties (UTS and hardness). An increase in ternary alloying element increased transformation temperature range, entropy and elastic energy values. The shape memory effect and mechanical properties are enhanced by the increase in ternary alloying element. The study revealed that compositional variation of Al should be limited to a range of 8 to 14 Wt.% and Ag from 2 to 8 Wt.%. Microstructural and diffraction studies identified the ß’1 martensite as a desirable phase for enhancing shape memory properties.

Originality/value

Numerous studies have been made in exploring the transformation temperature and phase formation for similar Cu-Al-Ag shape memory alloys, but their influence on shape memory effect was not extensively studied. In the present work, the influence of Al and Ag content on shape memory characteristics is carried out to increase the design choice for engineering applications of shape memory alloy. These materials exhibit mechanical and shape memory properties within operating ranges similar to other copper-based shape memory alloys.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 August 2022

Wenjun Wang, Luting Shen, Yinsong Si, Islam MD Zahidul, Azim Abdullaev and Yubing Dong

Sodium alginate (Na-Alg) is a natural polysaccharide with a rich and renewable production that is widely used in the food, pharmaceutical and daily necessities industries, among…

Abstract

Purpose

Sodium alginate (Na-Alg) is a natural polysaccharide with a rich and renewable production that is widely used in the food, pharmaceutical and daily necessities industries, among other fields. The purpose of this study is to obtain a green and degradable shape memory material, calcium alginate (Ca-Alg) film was prepared and the mechanical properties, the shape memory effect of the film were investigated and confirmed.

Design/methodology/approach

The Ca-Alg films were prepared by Na-Alg, calcium chloride (CaCl2) solution, and flow extension method. Dissolve sodium alginate powder, remove bubbles, pour into petri dish, dry at 60°C, add calcium chloride solution cross-linking and finally dry naturally. The effect of CaCl2 solution concentration on the mechanical properties of the films were investigated and discussed by universal tensile tester. The shape memory behavior and degradation performance of thin films were verified and studied by the fold-deploy shape memory test and soil embedding method, respectively.

Findings

The Ca-Alg films exhibited good mechanical and shape memory properties, with a 72.2% shape memory fixity ratio and a 92.3% shape memory recovery ratio, respectively. For a period of 120 days, the film treated with a 6 wt% CaCl2 solution degraded at a rate of approximately 53%.

Research limitations/implications

Shape memory polymers (SMPs) as intelligent materials are an important research direction for the development of modern high-tech materials. On the other hand, plastic pollution is a major problem today; as a result, preparing green degradable SMPs is essential.

Originality/value

This study synthesized transparent and degradable shape memory Ca-Alg films using Na-Alg and CaCl2 solution and the flow extension method.

Details

Pigment & Resin Technology, vol. 53 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 November 2022

Laiming Yu, Yaqin Fu and Yubing Dong

The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely…

Abstract

Purpose

The purpose of this study is to investigate the thermomechanical condition on the shape memory property of Polybutylene adipate-co-terephthalate (PBAT). PBAT is a widely researched and rapidly developed biodegradable copolyester. In a tensile test, we found that the fractured PBAT samples had a heat-driven shape memory effect which piqued our interest, and it will lay a foundation for the application of PBAT in new fields (such as heat shrinkable film).

Design/methodology/approach

The shape memory effect of PBAT and the effect of the thermomechanical condition on its shape memory property were confirmed and systematically investigated by a thermal mechanical analyzer and tensile machine.

Findings

The results showed that the PBAT film had broad shape memory transform temperature and exhibited excellent thermomechanical stability and shape memory properties. The shape memory fixity ratio (Rf) of the PBAT films was increased with the prestrain temperature and prestrain, where the highest Rf exceeded 90%. The shape memory recovery ratio (Rr) of the PBAT films was increased with the shape memory recovery temperature and decreased with the prestrain value, and the highest Rr was almost 100%. Moreover, the PBAT films had high shape memory recovery stress which increased with the prestrain value and decreased with the prestrain temperature, and the highest shape memory recovery stress can reach 7.73 MPa.

Research limitations/implications

The results showed that PBAT had a broad shape memory transform temperature, exhibited excellent thermomechanical stability and shape memory performance, especially for the sample programmed at high temperature and had a larger prestrian, which will provide a reference for the design, processing and application of PBAT-based heat shrinkable film and smart materials.

Originality/value

This study confirmed and systematically investigated the shape memory effect of PBAT and the effect of the thermomechanical condition on the shape memory property of PBAT.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 January 2023

N. Dhanunjayarao Borra and Venkata Swamy Naidu Neigapula

The tear strength (Ts) is a significant property for any kind of soft polymeric material such as rubber, elastomer, viscoelastic material and its composites, to quantify the…

Abstract

Purpose

The tear strength (Ts) is a significant property for any kind of soft polymeric material such as rubber, elastomer, viscoelastic material and its composites, to quantify the suitability of a material for any shape memory applications. Many times, the soft elastomeric polymer material has to be capable enough to deform to a maximum extent of displacement but at the same time, it has to withstand the maximum load without fail. Along with shape recovery properties (i.e. the ability to recover its shape from programmed to the original), the success of the shape memory cycle is mainly depending on its stiffness and strength. It has to resist tear during stretching (i.e. programming stage) as repeatedly subjected to deformation, and, hence, it is important to study the tear behaviour for shape memory polymers (SMPs) and their composites. The purpose of the work is to investigate the effect of parameters on Ts of 4D printed specimen using Taguchi method.

Design/methodology/approach

The objective of the work is to tailor the Ts of SMPs by reinforcing the graphene nano particles (GNPs) in a blended photopolymer (PP) resin with flexible PP and hard PP resin. In this study, a total of nine experiments were designed based on the L9 orthogonal array (OA) using the design of experiments (DOEs). All the shape memory photopolymer composite’s (SMPPCs) specimens are fabricated using masked stereolithography (MSLA), also known as resin three-dimensional printing (R3DP) technique.

Findings

Specimens are tested using universal testing machine (UTM) for maximum tear force (Fmax) and displacement (δ) caused by tearing the specimen to evaluate the strength against the tear. The results showed that the Wt.% of resin blend highly influenced both Fmax and δ, while GNPs also had an impact on δ. The specimens are offering more tear resistance for those specimens blended with less Wt.% of flexible PP at the same time the specimens enable more δ for those specimens reinforced with 0.3 Wt.% GNPs at 10-s exposure time. The optimum combinations are A1, B1 and C3 for the Fmax and Ts and at the same time A1, B3 and C3 for δ.

Research limitations/implications

To customise the tear resistance of SMPPCs using MSLA 3 D printing, this study suggested a blend of PP resins reinforced with GNPs. This opens up a new path for creating novel, inexpensive multi-functional 4-dimensional (4D) printed parts.

Originality/value

The use of flexible PP and hard PP resin blends, fabricating the SMPPCs specimens using 3 D printed MSLA technology, investigating the effect of GNPs, resin blend and exposure time, optimizing the process parameters using Taguchi and the work were all validated using confirmation tests and regression analysis using test train method, which increases the originality and novelty.

Article
Publication date: 31 July 2023

Badegül Tunçay, Harun Çuğ, Tansel Tunçay, Dursun Özyürek and Katarzyna Cesarz-Andraczke

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Abstract

Purpose

This study aims to investigate NiTi alloys’ characterization and corrosion behaviour produced by two different powder metallurgy (PM) methods.

Design/methodology/approach

It was pre-formed under a protective atmosphere at 900 °C under a force of 45 MPa and sintered for 1 h under 10–6 Mbar in an atmosphere-controlled heat treatment furnace at 1,100 °C. The relationship between microstructural properties, SEM, XRD, density, microhardness and corrosion behaviour of pre-alloyed NiTi alloys produced by two different methods with the production method was investigated.

Findings

As a result of the studies, TiO, NiTi, NiTi2 and Ni3Ti intermetallics were determined in XRD examinations. The best surface roughness was observed in the mechanically milled (MM’ed) pre-alloyed NiTi alloy compared to the pre-alloyed NiTi alloy mixed with turbula. The corrosion tests performed in 3.5% NaCl solution determined that the MM’ed pre-alloyed NiTi alloy had better corrosion resistance than the pre-alloyed NiTi alloy mixed with turbula. Pitting corrosion was visualized in the SEM images taken from the corrosion surfaces.

Originality/value

Two different PM methods produced pre-alloyed NiTi powders, and the effects of these methods on the mechanical and corrosion resistance of NiTi alloys were systematically investigated for the first time.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 December 2022

Changhui Song, Junfei Huang, Linqing Liu, Zehua Hu, Yongqiang Yang, Di Wang and Chao Yang

This paper aims to better control the mechanical properties and functional properties of NiTi alloy.

Abstract

Purpose

This paper aims to better control the mechanical properties and functional properties of NiTi alloy.

Design/methodology/approach

NiTi alloy samples with equal atomic ratio were formed by selective laser melting (SLM). X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy and tensile testing methods were used to study the effects of different laser power and scanning speed on the densification behavior, phase transformation characteristics and mechanical properties of NiTi alloy.

Findings

Compared with the laser power, the variation of the keyhole effect caused by the change of scanning speed is more intense, which has a greater effect on the densification behavior of SLM NiTi alloy. The effect of the laser power on the phase transition temperature is small. The increase of scanning speed weakens the burning degree of Ni element, so phase transition temperature decreases. The results of DSC test and tensile test show that the scanning velocity can significantly change the phase transition temperature, martensite twins reorientation and stress–strain behavior of SLM NiTi alloy.

Originality/value

This study provides a potential method to regulate the mechanical properties and functional properties of NiTi shape memory alloy in the future and NiTi alloys formed by SLM with good elongation were obtained because the Supercellular crystal structure formed during the nonequilibrium solidification of SLM and the superfine precipitates dispersed in the alloy prevented the dislocation formation.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 September 2023

Siddhesh Umesh Mestry, Vardhan B. Satalkar and S.T. Mhaske

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching…

Abstract

Purpose

This study aims to describe the design and synthesis of two novel azo and imine chromophores-based dyes derived from two different aldehydes with intramolecular colour matching that are pH sensitive.

Design/methodology/approach

The visible absorption wavelength (λmax) was extended when azo chromophore was included in imine-based systems. The dyed patterns created sophisticated colour-changing paper packaging sensors with pH-sensitive chromophores using alum as a mediator or mordant. Due to the tight adhesive bonding, the dyes on paper’s cellulose fibres could not be removed by ordinary water even at extremely high or low pH, which was confirmed by scanning electron microscopy analysis. The dyed patterns demonstrated an evident, sensitive and fast colour-changing mechanism with varying pH, from pale yellow to red for Dye-I and from pale yellow to brown-violet for Dye-II.

Findings

The λmax for colour changing was recorded from 400 to 490 nm for Dye-I, whereas from 400 to 520 for Dye-II. The freshness judgement of food was checked using actual experiments with cooked crab spoilage, where the cooked crab was incubated at 37 oC for 6 h to see the noticeable colour change from yellow to brown-violet with Dye-II. The colour-changing mechanism was studied with Fourier transform infrared (FTIR) spectra at different pH, and thin layer chromatography, nuclear magnetic resonance and FTIR spectroscopy studied the desired structure formation of the dyes. Potential uses for smart packaging sensors include quickly detecting food freshness during transportation or right before consumption.

Originality/value

1. Two novel azo-imine dyes have been synthesized with a pH-responsive effect. 2. The pH-responsive mechanism was studied. 3. The study was supported by computational chemistry using density functional theory. 4. The obtained dyes were used to make pH-responsive sensors for seafood packaging to judge the freshness.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 October 2023

Shengxian Huang, Huihe Qiu and Ying Wang

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable…

Abstract

Purpose

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable deformation airfoil for fixed-wing micro air vehicle (MAV), this paper proposes an improved airfoil design method of fixed-wing MAV based on the profile data of S5010 airfoil.

Design/methodology/approach

Combined with the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil. Then, according to the influence law of single parameter variation on the aerodynamic performance of the airfoil, the original airfoil is synthetically deformed by changing multiple parameters.

Findings

By comparing the aerodynamic performance of the multi-parameter deformed airfoil with the original airfoil, it is found that the lift coefficient of the multi-parameter deformed airfoil changes from negative to positive value when AOA = 0°. When AOA = 2°, the lift coefficient growth rate is the largest, which is 47.27%, and the lift-to-drag ratio is increased by 50.00%. At other angles of attack, the lift, drag, and torque coefficients of the multi-parameter deformed airfoil are optimized to some extent.

Originality/value

Combined the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 July 2022

Peilin Cheng, Yuze Ye, Bo Yan, Yebo Lu and Chuanyu Wu

Soft grippers have safer and more adaptable human–machine and environment–machine interactions than rigid grippers. However, most soft grippers with single gripping postures have…

Abstract

Purpose

Soft grippers have safer and more adaptable human–machine and environment–machine interactions than rigid grippers. However, most soft grippers with single gripping postures have a limited gripping range. Therefore, this paper aims to design a soft gripper with variable gripping posture to enhance the gripping adaptability.

Design/methodology/approach

This paper proposes a novel soft gripper consisting of a conversion mechanism and four spring-reinforced soft pneumatic actuators (SSPAs) as soft fingers. By adjusting the conversion mechanism, four gripping postures can be achieved to grip objects of different shapes, sizes and weights. Furthermore, a quasi-static model is established to predict the bending deformation of the finger. Finally, the bending angle of the finger is measured to validate the accuracy of the quasi-static model. The gripping force and gripping adaptability are tested to explore the gripping performance of the gripper.

Findings

Through experiments, the results have shown that the quasi-static model can accurately predict the deformation of the finger; the gripper has the most significant gripping force under the parallel posture, and the gripping adaptability of the gripper is highly enhanced by converting the four gripping postures.

Originality/value

By increasing the gripping posture, a novel soft gripper with enhanced gripping adaptability is proposed to enlarge the gripping range of the soft gripper with a single posture. Furthermore, a quasi-static model is established to analyze the deformation of SSPA.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000