Search results
1 – 4 of 4Madhura Sen, Violet D’Souza, Shambhavi Sharma and Ramya Shenoy
This paper aims to discuss and urge further deliberation on possible strategies to help geriatric and special needs patients to receive dental care during the pandemic.
Abstract
Purpose
This paper aims to discuss and urge further deliberation on possible strategies to help geriatric and special needs patients to receive dental care during the pandemic.
Design/methodology/approach
This paper contains literature review of published research articles related to past epidemics, COVID-19 and older persons.
Findings
Accurate prediction of adverse outcomes, detection of unidentified problems, improved estimation of residual life expectancy and appropriate use of geriatric interventions is required to understand the necessity of the treatment and effect of possible COVID-19 contraction during the treatment.
Research limitations/implications
The authors reviewed the only published literature and collated the lessons learnt from past epidemics, as the natural history of the COVID-19 is not known.
Practical implications
Future dentists must be trained in crisis management to deal with pandemics more effectively. The dental fraternity should be equipped to provide some sort of “psychological counseling and reassurance” prior to dental care to vulnerable individuals with comorbidities and special needs.
Originality/value
There are very few published articles focused on unique dental care plans for geriatric and special needs patients.
Details
Keywords
Stock market forecasters are focusing to create a positive approach for predicting the stock price. The fundamental principle of an effective stock market prediction is not only…
Abstract
Purpose
Stock market forecasters are focusing to create a positive approach for predicting the stock price. The fundamental principle of an effective stock market prediction is not only to produce the maximum outcomes but also to reduce the unreliable stock price estimate. In the stock market, sentiment analysis enables people for making educated decisions regarding the investment in a business. Moreover, the stock analysis identifies the business of an organization or a company. In fact, the prediction of stock prices is more complex due to high volatile nature that varies a large range of investor sentiment, economic and political factors, changes in leadership and other factors. This prediction often becomes ineffective, while considering only the historical data or textural information. Attempts are made to make the prediction more precise with the news sentiment along with the stock price information.
Design/methodology/approach
This paper introduces a prediction framework via sentiment analysis. Thereby, the stock data and news sentiment data are also considered. From the stock data, technical indicator-based features like moving average convergence divergence (MACD), relative strength index (RSI) and moving average (MA) are extracted. At the same time, the news data are processed to determine the sentiments by certain processes like (1) pre-processing, where keyword extraction and sentiment categorization process takes place; (2) keyword extraction, where WordNet and sentiment categorization process is done; (3) feature extraction, where Proposed holoentropy based features is extracted. (4) Classification, deep neural network is used that returns the sentiment output. To make the system more accurate on predicting the sentiment, the training of NN is carried out by self-improved whale optimization algorithm (SIWOA). Finally, optimized deep belief network (DBN) is used to predict the stock that considers the features of stock data and sentiment results from news data. Here, the weights of DBN are tuned by the new SIWOA.
Findings
The performance of the adopted scheme is computed over the existing models in terms of certain measures. The stock dataset includes two companies such as Reliance Communications and Relaxo Footwear. In addition, each company consists of three datasets (a) in daily option, set start day 1-1-2019 and end day 1-12-2020, (b) in monthly option, set start Jan 2000 and end Dec 2020 and (c) in yearly option, set year 2000. Moreover, the adopted NN + DBN + SIWOA model was computed over the traditional classifiers like LSTM, NN + RF, NN + MLP and NN + SVM; also, it was compared over the existing optimization algorithms like NN + DBN + MFO, NN + DBN + CSA, NN + DBN + WOA and NN + DBN + PSO, correspondingly. Further, the performance was calculated based on the learning percentage that ranges from 60, 70, 80 and 90 in terms of certain measures like MAE, MSE and RMSE for six datasets. On observing the graph, the MAE of the adopted NN + DBN + SIWOA model was 91.67, 80, 91.11 and 93.33% superior to the existing classifiers like LSTM, NN + RF, NN + MLP and NN + SVM, respectively for dataset 1. The proposed NN + DBN + SIWOA method holds minimum MAE value of (∼0.21) at learning percentage 80 for dataset 1; whereas, the traditional models holds the value for NN + DBN + CSA (∼1.20), NN + DBN + MFO (∼1.21), NN + DBN + PSO (∼0.23) and NN + DBN + WOA (∼0.25), respectively. From the table, it was clear that the RMSRE of the proposed NN + DBN + SIWOA model was 3.14, 1.08, 1.38 and 15.28% better than the existing classifiers like LSTM, NN + RF, NN + MLP and NN + SVM, respectively, for dataset 6. In addition, he MSE of the adopted NN + DBN + SIWOA method attain lower values (∼54944.41) for dataset 2 than other existing schemes like NN + DBN + CSA(∼9.43), NN + DBN + MFO (∼56728.68), NN + DBN + PSO (∼2.95) and NN + DBN + WOA (∼56767.88), respectively.
Originality/value
This paper has introduced a prediction framework via sentiment analysis. Thereby, along with the stock data and news sentiment data were also considered. From the stock data, technical indicator based features like MACD, RSI and MA are extracted. Therefore, the proposed work was said to be much appropriate for stock market prediction.
Details
Keywords
Karlo Puh and Marina Bagić Babac
Predicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP…
Abstract
Purpose
Predicting the stock market's prices has always been an interesting topic since its closely related to making money. Recently, the advances in natural language processing (NLP) have opened new perspectives for solving this task. The purpose of this paper is to show a state-of-the-art natural language approach to using language in predicting the stock market.
Design/methodology/approach
In this paper, the conventional statistical models for time-series prediction are implemented as a benchmark. Then, for methodological comparison, various state-of-the-art natural language models ranging from the baseline convolutional and recurrent neural network models to the most advanced transformer-based models are developed, implemented and tested.
Findings
Experimental results show that there is a correlation between the textual information in the news headlines and stock price prediction. The model based on the GRU (gated recurrent unit) cell with one linear layer, which takes pairs of the historical prices and the sentiment score calculated using transformer-based models, achieved the best result.
Originality/value
This study provides an insight into how to use NLP to improve stock price prediction and shows that there is a correlation between news headlines and stock price prediction.
Details
Keywords
Coronavirus disease (Covid-19) has created uncertainty in all countries around the world, resulting in enormous human suffering and global recession. Because the economic impact…
Abstract
Purpose
Coronavirus disease (Covid-19) has created uncertainty in all countries around the world, resulting in enormous human suffering and global recession. Because the economic impact of this pandemic is still unknown, it would be intriguing to study the incorporation of the Covid-19 period into stock price prediction. The goal of this study is to use an improved extreme learning machine (ELM), whose parameters are optimized by four meta-heuristics: harmony search (HS), social spider algorithm (SSA), artificial bee colony algorithm (ABCA) and particle swarm optimization (PSO) for stock price prediction.
Design/methodology/approach
In this study, the activation functions and hidden layer neurons of the ELM were optimized using four different meta-heuristics. The proposed method is tested in five sectors. Analysis of variance (ANOVA) and Duncan's multiple range test were used to compare the prediction methods. First, ANOVA was applied to the test data for verification and validation of the proposed methods. Duncan's multiple range test was used to identify a suitable method based on the ANOVA results.
Findings
The main finding of this study is that the hybrid methodology can improve the prediction accuracy during the pre and post Covid-19 period for stock price prediction. The mean absolute percent error value of each method showed that the prediction errors of the proposed methods were all under 0.13106 in the worst case, which appears to be a remarkable outcome for such a difficult prediction task.
Originality/value
The novelty of this study is the use of four hybrid ELM methods to evaluate the automotive, technology, food, construction and energy sectors during the pre and post Covid-19 period. Additionally, an appropriate method was determined for each sector.
Details