Search results

1 – 6 of 6
Article
Publication date: 1 February 2022

Esmail Cheraghi, Shakib Zohrehvandi, Mario Vanhoucke and Babak Mohamadpour Tosarkani

This research presents a multiproject scheduling and resource management (MPSRM) model that includes an M/M/c/n queue system, a p-hub median model, a parallel machine scheduling…

Abstract

Purpose

This research presents a multiproject scheduling and resource management (MPSRM) model that includes an M/M/c/n queue system, a p-hub median model, a parallel machine scheduling and a hub location problem solution method. This research aims to design a project network and then sequence raw materials delivery to hub factories.

Design/methodology/approach

This research is implemented as a case study in construction and industrial company. It considers several mines to supply raw materials for production in hub factories. In the sequencing phase, a parallel mine scheduling problem specifies the delivery of raw materials to hub factories. Furthermore, a multisource project scheduling model is studied and designed for building project-oriented companies.

Findings

The results suggest that the proposed MPSRM model in this study significantly reduces project transportation costs. Therefore, creating accurate planning in projects, especially in construction projects where transportation plays an important role, can help reduce time and costs. Researchers, project managers and those dealing with projects can use this model to exploit their projects.

Research limitations/implications

When the number of construction projects in a construction company increases in a region, choosing an appropriate strategy to supply resources and raw materials becomes very important in terms of profit and loss and project completion as scheduled. An increase in transportation demands alongside the economic development on the one hand and providing competitive transportation services, on the other hand, have increasingly spotlighted the significance of hub networks in transportation systems. In addition, in this research, there is no suitable access road from the mines to the project sites, and considering the workload, if any of the projects become a hub, a proper road should be built.

Originality/value

To the best of the knowledge, there is no outstanding research in which a p-hub median location problem by considering queuing model and different transportation modes and a parallel machine scheduling problem are studied simultaneously.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 March 2021

Shakib Zohrehvandi, Mohammad Khalilzadeh, Maghsoud Amiri and Shahram Shadrokh

The aim of this research is to propose a buffer sizing and buffer controlling algorithm (BSCA) as a heuristic algorithm for calculating project buffer and feeding buffers as well…

Abstract

Purpose

The aim of this research is to propose a buffer sizing and buffer controlling algorithm (BSCA) as a heuristic algorithm for calculating project buffer and feeding buffers as well as dynamic controlling of buffer consumption in different phases of a wind power plant project in order to achieve a more realistic project duration.

Design/methodology/approach

The BSCA algorithm has two main phases of planning and buffer sizing and construction and buffer consumption. Project buffer and feeding buffers are determined in the planning and buffer sizing phase, and their consumption is controlled in the construction and buffer consumption phase. The heuristic algorithm was coded and run in MATLAB software. The sensitivity analysis was conducted to show the BSCA influence on project implementation. Then, to evaluate the BSCA algorithm, inputs from this project were run through several algorithms recently presented by researchers. Finally, the data of 20 projects previously accomplished by the company were applied to compare the proposed algorithm.

Findings

The results show that BSCA heuristic algorithm outperformed the other algorithms as it shortened the projects' durations. The average project completion time using the BSCA algorithm was reduced by about 15% compared to the previous average project completion time.

Originality/value

The proposed BSCA algorithm determines both the project buffer and feeding buffers and simultaneously controls their consumption in a dynamic way.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 September 2019

Shakib Zohrehvandi, Mario Vanhoucke, Roya Soltani and Mehrdad Javadi

The purpose of this paper is to introduce a reconfigurable model that is a combination of a schedule model and a queuing system M/M/m/K to reduce the duration of the wind turbine…

Abstract

Purpose

The purpose of this paper is to introduce a reconfigurable model that is a combination of a schedule model and a queuing system M/M/m/K to reduce the duration of the wind turbine construction project closure phase and reduce the project documentation waiting time in the queue.

Design/methodology/approach

This research was implemented in a wind farm project. The schedule model deals with reducing the duration of the turbines closure phase by an activity overlapping technique, and the queuing system deals with reducing the turbine documentation waiting time in the queue, as well as reducing the probability of server idleness during the closure phase.

Findings

After the implementation of the model, the obtained results were compared to those of similar previously conducted projects in terms of duration, and the model was found effective.

Research limitations/implications

Project closure is an important and mandatory process in all projects. More often than not, this process is faced with problems including prolonged project duration, disputes, lawsuits, and also in projects like the implementation of wind farms, a queue of documents at closing stage may also cause difficulties in project closure phase.

Originality/value

The contributions of this research are twofold: first, a combination of project management and queuing system is presented, and second, a reconfigurable model is introduced to enhance the performance and productivity of the closure phase of the project through reducing the implementation time and reducing the turbine documentation waiting time in the queue, as well as reducing the probability of server idleness during the closure phase of the wind farm project.

Details

Engineering, Construction and Architectural Management, vol. 27 no. 2
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 29 April 2020

Shakib Zohrehvandi, Mario Vanhoucke and Mohammad Khalilzadeh

This study aims to introduce an efficient project buffer and resource management (PBRM) model for project resource leveling and project buffer sizing and controlling of project…

Abstract

Purpose

This study aims to introduce an efficient project buffer and resource management (PBRM) model for project resource leveling and project buffer sizing and controlling of project buffer consumption of a wind power plant project to achieve a more realistic project duration.

Design/methodology/approach

The methodology of this research consists of three main phases. In the first phase of the research methodology, resource leveling is done in the project and resource conflicts of activities are identified. In the second phase, the project critical chain is determined, and the appropriate size of the project buffer is specified. In the third phase of the methodology, buffer consumption is controlled and monitored during the project implementation. After using the PBRM method, the results of this project were compared with those of the previous projects.

Findings

According to the obtained results, it can be concluded that using PBRM model in this wind turbine project construction, the project duration became 25 per cent shorter than the scheduled duration and also 29 per cent shorter than average duration of previous similar projects.

Research limitations/implications

One of the major problems with projects is that they are not completed according to schedule, and this creates time delays and losses in the implementation of projects. Today, as projects in the energy sector, especially renewable projects, are on the increase and also we are facing resource constraint in the implementation of projects, using scheduling techniques to minimize delays and obtain more realistic project duration is necessary.

Practical implications

This research was carried out in a wind farm project. In spite of the initial plan duration of 142 days and average duration of previous similar projects of 146 days, the project was completed in 113 days.

Originality/value

This paper introduces a practical project buffer and resource management model for project resource leveling, project buffer sizing and buffer consumption monitoring to reach a more realistic schedule in energy sector. This study adds to the literature by proposing the PBRM model in renewable energy sector.

Details

International Journal of Energy Sector Management, vol. 14 no. 6
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 10 May 2019

Shakib Zohrehvandi and Mohammad Khalilzadeh

The purpose of this paper is to present an efficient model for project buffer sizing by taking failure mode and effects analysis (FMEA) into account to reach a more realistic…

Abstract

Purpose

The purpose of this paper is to present an efficient model for project buffer sizing by taking failure mode and effects analysis (FMEA) into account to reach a more realistic schedule.

Design/methodology/approach

In the first phase of the project, several turbines were installed according to the primary schedule with an average duration of 142 days. Then, some of critical chain project management algorithms were separately applied in the implementation and installation of the other wind turbines. The adaptive procedure with resource tightness (APRT) method turned out to be the best method in terms of obtaining a more realistic schedule in this case study. Finally, FMEA was simultaneously applied with APRT.

Findings

Applying the hybrid method to the scheduling of the wind turbines, yielded the more realistic schedule than traditional.

Research limitations/implications

The proposed hybrid APRT-FMEA algorithm was implemented on a real wind farm construction project which was completed with 37 percent shorter duration than the initial estimation; in spite of the initial estimation of 142 days, the project completed in 103 days.

Practical implications

Introducing and implementing a new algorithm which is a combination of buffer sizing algorithms and one of the well-known and mostly used risk assessment methods in order to provide the more realistic project schedule in the construction of wind turbines.

Originality/value

Introducing and implementing a novel algorithm which is a combination of conventional buffer sizing method and one of the efficient risk assessment methods in order to make the schedule more realistic.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 6 of 6